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ABSTRACT

This thesis is divided into two parts. In the first part, the problem of signal detection in
fractional Gaussian noise is considered. To facilitate the study of this problem, several results
related to the reproducing kernel Hilbert space of fractiona! Brownian motion are presented.
In particular, this reproducing kernel Hilbert space is characterized completely, and an alterna-
tive characterization for the restriction of this class of functions to a compact interval [0,T] is
given. Infinite-interval whitening filters for fractional Brownian motion are also developed.
Application of these results to the signal detection problem yields necessary and sufficient
conditions for a deterministic or stochastic signal to produce a nonsingular shift when embed-
ded in additive fractional Gaussian noise. Also, a formula for the likelihood ratio correspond-
ing to any deterministic nonsingular shift is developed. Finally, some results concerning

detector performance in the presence of additive fractional Gaussian noise are presented.

In the second part of the thesis, the application of reproducing kernel Hilbert space

theory to the problems of robust detection and estimation is investigated. It is shown that this

- approach provides a general and unified framework in which to analyze the problems of L2

estimation, matched filtering, and quadratic detection in the presence of uncertainties regarding
the second-order structure of the random processes involved. Minimax robust solutions to
these problems are characterized completely, and some results concerning existence of robust

solutions are presented.
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CHAPTER 1

INTRODUCTION

In this thesis, we consider a variety of problems in the area of statistical signal process-

_ing. The work is divided into two relatively unrelated parts, the common factor being the

application of reproducing kernel Hilbert space (RKHS) theory to the various problems con-
sidered. Since each part of the thesis is essentially self-contained, each comprising a separate
chapter, we present here only some brief introductory remarks and an overview of the thesis.
Each of the two major chapters includes a more complete introduction to the material

presented.

In the first part of the thesis, we consider the problem of communication in the presence
of noise displaying strong long-term dependence. We are motivated to consider this problem
by the prevalence of natural phenomena that exhibit behavior indicative of such dependence.
Among the many physical processes exhibiting such behavior are river flows, frequency
fluctuations in oscillators, current fluctuations in semiconductors, and errors on communica-
tions channels. Given the ubiquitous nature of phenomena displaying long-term dependence,
it seems desirable to consider the problem of communication in the presence of strongly
dependent noise. We consider one aspect of this problem, namely, signal detection in the
presence of additive, strongly dependent noise, and we adopt as our noise modei the class of
random processes known as fractional Brownian motions and the associated derivative

processes referred to as fractional Gaussian noises.

In the second part of the thesis, we consider the problems of robust L? estimation,

matched filtering, and quadratic detection in the presence of uncertainty regarding the




statistical structure of the random processes invoived. In recent years, the game-theoretic
minimax approach to designing robust detection and estimation procedures has been studied
by many authors. We also employ a minimax strategy, but we formulate and analyze the
robust detection and estimation problems in an RKHS context. This approach provides a gen-
eral and unified framework in which to analyze these problems and also clearly reveals the

underlying similarities of the problems.

The thesis is organized as follows. In Chapter 2, we give a brief review of the relevant
RKHS theory. In Chapter 3, we study the problem of signal detection in fractional Gaussian
noise, and in Chapter 4, we consider the robust detection and estimation problems. In

Chapter S5, we present some concluding remarks.




CHAPTER 2

REVIEW OF REPRODUCING KERNEL HILBERT SPACE RESULTS

In subsequent chapters of this thesis, we make frequent use of some basic results from
the theory of reproducing kernel Hilbert spaces. We give below a brief review of these

results. For a thorough introduction to the subject, see, for example, {74].

Let I be any index set. The term covariance function refers to any symmetric,
nonnegative-definite function K:/2 — € Associated with any such covariance function,
there is a unique Hilbert space H (K) of functions defined on / such that, for all ¢+ € / and all
f e HK),

K(t)e HKK),

and

f@ =Y. KC)mx)

This function space is called the reproducing kernel Hilbert space, or RKHS, with reproduc-
ing kernel K, and it is well-known (see [1], §1.2) that B (K') consists of functions f:/ — €

of the form
N N N
O =Z0.K(¢.8), (0:limcd ()is, </,
i=1
and their limits under the norm

2 N o=
Wf gy = X 6:9;K;.8).

iy=1

Note that norm convergence in H (K') implies pointwise convergence on [ since, for all ¢t € /




and all f,g € H(K),

If @) -g@® = 1Uf - 8) K haw)!
SW-gllax) K@)

Given any two RKHSs H (K,) and H (K ) defined on the index set /, the direct product

space H (K ;) ® H (K ,) consists of functions g: /2 — € of the form

N
g('r*) = Z ‘YinO('vti)Kl(*Jj)v {‘YIILN,I=1 < d:’ {ti }lhil o 1’
i.j=1

and their limits under the norm

N N _
gy emxy= X 2 YijYuKolte:t:)K 1 (t1.8))-
ij=1 k=1

It follows (see [1], §1.8) that H (K ) @ H (K ) is itself an RKHS with reproducing kernel

K (21,7 (12,0)) = Kot 1. K 1 (71,70, (CRALR &

If X2 (X(@¢);tel) is a stochastic process with covariance function Kx and mean
function m € H(Ky), then H (X) ARK x) is congruent (i.e., isometrically isomorphic) to
the Hilbert space L%(X) spanned by the random variables {X(¢), r € I} (see [48], §2). For
any g € H (X), the corresponding element in L*(X) is usually denoted by (X, g},, (x) and is

characterized by the property that
g@)= Cov{X(t), 'X, g),(x)}, Yrel (2.1.1H

It follows that, for all t € I and g ,h € H(K),

X, KxCH ) eny = X @),




E{(X' 8).<x)} =!m, ¢\gxy 2.12)
and
COV{(X’ g mxy X f )n<x>}= i, 2wy (2.13)

For our purposes, we will often take / itself to be a Hilbert space H,. For example, H
might be L2(R), the space of real-valued functions that are square-integrable with respect to
Lebesgue measure on R. In this case, the observations are regarded as a generalized random
process; that is, X is regarded as a linear operator mapping H into the space of square-
integrable random variables on some probability space. The space L?X) then consists of
mean-square linﬂts of random variables of the form X(f), f € H, and a covariance function
is a bilinear form K: H3 — R. In fact, we will assume that all covariance functions are
bounded bilinear forms so that they are generated by covariance operators on H (; that is, for

all f,2 € Hy,
K(f.8)=EX(X @)=Y, Kg)m,

where K: H, - H is bounded, linear, self-adjoint, and positive (see [14], Lemma X.2.2).
The RKHS corresponding to such a covariance function (denoted by H (K) as well as H (K))

consists of bounded linear functionals s: Hy — R of the form
S(‘) = (’7 Kg>n°1 8 € "0’
and their limits under the norm

s & ) =€ Ke)m,




Equivalently (see [48], §9), H (K) consists of functionals s of the form
s() =K*f, S\, ={f . K*S)n,, f e A,
where K* is the square root of the operator K and § € H is contained in the closure of the
range of K*. The norm of s in H (K) is then
sl =S S)m,

Of course, appealing to the congruence between H and its dual & 6, we could just as well
say that H (K') consists of functions s € H of the form s = K*S, where S is contained in
the closure of the range of K*%. While this is not technically correct (since H(K) c H 5), it
is a useful way of thinking, and we will often blur the distinction between functions and func-

tionals by writing statements such as
s(f)=v1s>"°, f (3 HO'
The following two results are useful for characterizing RKHSs and finding canonical

representations of stochastic processes. Proofs can be found, for example, in [20].

Theorem 2.1.1: Let I be any index set and let K be a covariance function defined on /.
Suppose there exists a measure space (A.B,v) and a set of functions {f,;t € ) < Lv)

such that

K(s.t) = [f,0F,Ddvd), ¥(s.0)e It
A

Then H (K') consists of functions of ;hc form

g(t) = [f:NF Wdv(h), tel,
A




where § € span(f,; ¢t € I'}). Further, for all g,» € H(X),

8. gy = [k ME A VQL).
A

Theorem 2.1.2: If X 8 (X(¢); ¢ € I} is a zero-mean stochastic process with covariance

function Ky such that, as above,

Kx(s£) = [f,O0F, Rydv(h), Y (s4) € I2,
A

then there exists an orthogonal process Zx on A with associated measure v such that

X®) = [f,(WNaZx(), Virel,
A

and L%(X) = L%Zy) if and only if {f,; ¢t € I} spans L%(v). Further, for all g € H (X),

X gax = 1{ g AdZx(A),

where g is given by Theorem 2.1.1.

The final two results of this section relate RKHS theory to hypothesis testing. Theorem
2.1.3 is well-known, and excellent discussions of it can be found in [21] and [22]. Theorem

2.1.4 is due to Oodaira [45].

Theorem 2.1.3: Suppose that / is a separable metric space and X 8 (X (¢); ¢t € /) is

Gaussian with continuous covariance function Kx. The hypothesis testing problem:

HO: X has mean zero
versus

HI: X has mean function m,




is nonsingular if and only if m € H (X), in which case, the likelihood ratio is given by
LX) = exp [(X, mgx) — Y2 m, m),(x)]

Theorem 2.1.4: Let I be a separable metric space and let X 4 (X (¢); ¢ € 7} be a Gaus-

sian process. Consider the following hypothesis testing problem:

H,: X has mean zero and continuous covariance function Ky

versus

H,: X has mean function m and continuous covariance function K.

This problem is nonsingular if and only if the following three conditions are satisfied.
() (K;-Ko e HKo@HK.

(ii) H(Kq) = H(K,) (in the set theoretic sense), or equivalently, there exist constants
0<c <C <o such that (CKg-K,;)and (K; —cKy) are both nonnegative

definite. (This is often abbreviated cKy « K; « CK.)

(iii) m, e H(Ky).




CHAPTER 3

SIGNAL DETECTION IN FRACTIONAL GAUSSIAN NOISE

3.1. Introduction

In statistical signal processing applications, the lack of independence between observa-
tions has traditionally been handled by modeling the data as an ARMA process with relatively
few parameters. Unfortunately, there are many physical processes that exhibit strong, posi-
tive, long-term correlations, which are not well-modeled by such ARMA processes. Such
long-term dependence is very often observed, for example, in geophysical data, where it takes
the form of long periods of high or low values (see [18] and the references cited therein).
Similarly, errors on communications channels, “... appear to be grouped in bursts, which are
in turn grouped in bursts, etc." [33]. This tendency for low or high values to be followed by
other low or high values is often referred to as the Joseph effect. It is indicative of a process
possessing a long memory and is perhaps best explained in terms of the spectral behavior of
such a process. In particular, if the observed process is stationary, and the correlations
between observations are positive and fall off so slowly that the covariance function is not
integrable, then the spectral density of the process will be unbounded at the origin. The

predominance of low-frequency power is the cause of the Joseph effect.

An important class of physical processes exhibiting strong long-term dependence are
those with I/f-type spectral behavior; that is, spectral densities approximately proportional to
f172 | where f represents frequency and H is a constant in the range %4 < H < %2. This type

of spectral behavior is observed in a great many different phenomena, including, for example,
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the frequency fluctuations in electrical oscillators, the current fluctuations in metal films and
semiconductor devices [76], and the loudness fluctuations in speech and music [72]. Many of
these 1/f-noises, as they are frequently called, appear to be relatively stationary and Gaussian;
but for values of H 2 1, it is not clear how such a spectrum should be interpreted (since no
stationary, L2 process could possess such a spectrum). Much discussion has been devoted to
this problem (see, for example, [26], [34], and [46]), but it is far from being resolved. For
values of H in the range %2 < H < 1, however, such processes can be modeled as generalized
Gaussian processes or as the (stationary) increments of nonstationary Gaussian processes.
This is, of course, analogous to the relationship between white Gaussian noise and ordinary

Brownian motion. In this thesis, we restrict our attention to values of H in this range.

An early attempt at modeling //f-noise was made by Barnes and Allan [5], who proposed
modeling the phase noise in oscillators as a fractional integral of white noise. (See [44] for a
discussion of fractional integration and differentiation.) The corresponding 1/f-type frequency
noise would then be modeled by the increments of the phase-noise process. The particular

fractional integral that Barnes and Allan proposed was

[4
1 2
Tam g(m)” dB (1), t 20,

where (B(t); t 2 0} is a Brownian motion. Unfortunately, a process defined in this way does
not have stationary increments. A later refinement of this model is the fractional Brownian
motion (FBM) process introduced by Mandelbrot and Van Ness [36]. This process, which is
discussed in more detail in the sequel, has stationary increments that exhibit //f~type spectral
behavior. In fact, in a certain sense, FBM has a stationary derivative, called fractional Gaus-

sian noise (FGN), with spectral density equal to f1"2 % < H < 1. In addition to being
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stationary, the increments of FBM are also self-similar; that is, for eacha >0 and 15 € R,
(By(tg+at) = By(te); te R) £ af (By(t); 1 e R},

where By is an FBM and "2" denotes equality of finite-dimensional distributions. Processes
with self-similar and stationary increments have received much attention in recent years since
they po;sscss many interesting properties. In particular, the sample paths of such a process are
fractals as defined in [35]. (For discussions of the various pmperﬁc§ of these processes, see,
for example, [27], [28], [42]}, [43], [60], [61], [62], [63], [64], and [71].) Because of its sim-
plicity and its many interesting properties, FBM has become a popular statistical model. In
addition to being the preeminent model for long-term dependence ([8], [18], (19], [29], and

[37)), it is finding increasing application as a model for image texture ([32], (49], and [50)).

In this chapter, we consider the problem of detecting signals in the presence of additive
FGN. We begin, in Section 3.2, with a discussion of the properties of FBM, including a
rigorous treatment of FGN. In Section 3.3, we study the reproducing kernel Hilbert space of
FBM. In Section 3.4, we discuss the problem of detecting deterministic signals in FGN, and
in Section 3.5, we consider nondeterministic signals. In Section 3.6, we investigate some
aspects of detector performance on FGN channels. Section 3.7 contains some concluding

remarks.

3.2. Fractional Brownian Motion and Fractional Gaussian Noise

The class of fractional Brownian motions, or FBMs, was introduced by Mandelbrot and
Van Ness in [36). In this section we will define this class of processes and discuss some of

their more interesting properties. A more complete development is given in [36].




12

For purposes of this paper, we will use the following (slightly specialized) version of the
definition given in [36). Motivation for this definition will be provided below. Let
BA(B();t € R) be a standard Brownian motion and let %2 < H < 1. The fractional

Brownian motion process By & {By(2); t € R} is defined by

0 t
B (:)é——-‘—- (le=tlH-"% — 1218-%)dB (v) + [1e—1H-%4B (1) |, t € R.
H T(H +4)

(3.2.1)

t 0
(Where, for ¢ < 0, the notation " _[ " should be interpreted as " —f ".) Clearly, B, is a zero-
0 ¢

mean Gaussian process and By (0) = 0. Notice that if we extend our definition to include
H =%, we get
By(t) =B(t), te R

In this sense, FBM can be regarded as a generalization of the familiar Brownian motion pro-
cess. It is a generalization that is particularly useful for applications, as we shall see in the

sequel.

The covariance function of By is given, after some analysis, by
Vi 24 2H 2H
KB,,(SJ)=T Is 147 4+ 119~ |t=s 1 R st e R, (3.2.2)

where

-I'(2-2H )cos(nH )

D (3.2.3)

Vy A Var[By (1)) =

It follows from this covariance structure that the increments of By are stationary and

self-similar; that is, for each a >0 and ¢y € R,
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(By(tg+at) - By(t); te R) £ a (By(1); 1 e R), (3.2.4)

where "2" denotes equality of finite-dimensional distributions. This property implies that B,
is statistically the same on all time scales. This also implies that the sample paths of B, are

fracuals, as defined in [35).
" From (3.24) it  follows that, for  any 8>0, the process
Bys 4 l{By (t49) - By(t);t € R) is a zero-mean, stationary Gaussian process with

covariance function

v 8?}1-2 2H 2H 2H
a0 =25 (s [Tl 7 L T e
(3.2.5)
= VyHQH-1)1t13# 2, 1Tl > §,
and power spectral density

S, (@) = [Ry, (e *dr, 0zwe R

- (3.2.6)
z o4, 0< lwdl < 1.

Equation (3.2.5) implies that the process By ; is mixing and ergodic but not strongly mixing
(in the sense of Rosenblatt [55]). Hence, the increments of FBM provide a simpie model for
processes with strong long-term dependence. Moreover, (3.2.6) implies that the increments of
FBM provide a good model for certain processes with 1/f-type spectral behavior. Although it
is not immediately obvious, (3.2.1) represents a fairly natural way to define a process with
this spectral behavior. We present in the following paragraph a'heuristic development of the

definition of FBM.
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In order for all increments to be stationary and exhibit 1/f~type spectral behavior, B

should have a zero-mean, stationary Gaussian "derivative” Wy with covariance function
Kw,(t) = VyH@2H-1)1t1H2, te R,

and power spectral density

Sw, (@) = o4, 0=oe R

That is, we would like to define By as
4

By () 2 [Wy (v, te R, (3.2.7)
0

where the process Wy has the properties described above. Following Barnes and Allan (5],
we define Wy to be the (H ~t4) order fractional integral cf white noise, but since white
noise is defined on all of R, we need to define our fractional integrals accordingly. That is,

we let

1

A1
Yu®) 2 T %

t
f lt—t | H-W (v)d, ¥YteR,

where W is a standard white noise process. Substituting this expression into (3.2.7) yields

[ 4

— [ [ s 1H-PW (s)dsd,
O—ce

R TR

which, upon changing the order of integration, becomes
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1 FO ¢ et
= — . |H-’Iz _o |H-" w
By () NCET) i gn:s dT |W (s )ds +“|c s |H="d 1 |W (5 )ds
1 ’0 t
=z —— | [ (1r=s 1H% — |5 1H-" lt—s 15"y i
THh i( r—=s | s YW (s )ds +£ t—s (s )ds

Rewriting the white noise integrals in terms of a standard Brownian motion B, we get (3.2.1).

The process W, described above is loosely referred to as fractional Gaussian noise, or
FGN. Clearly, no such process actually exists, but the concept of FGN and its relationship to
FBM can be made rigorous by defining Wy as a generalized Gaussian process; that is, as a
linear operator acting on Aa certain subset of L2(R). Then, if we let [ (0] be the indicator

function of the interval [0,r], we get
By(t) =Wyl YtreR (3.2.8)

(Note: fort <0, we let [ (g, 4 (c,0-) This is, of course, a generalization of the well-known
relationship between Brownian motion and white noise, and one can define FGN in much the

same way that one can define white noise, as follows.

Let B again be a standard Brownian motion, and let By be an FBM derived from B via
(3.2.1). It is well known that there is an orthogonal increments process Z 4 (Z(w); e R)
with mean zero and variance 1/(2x) such that, for any function f e L2(R) with Fourier

transform f , we have
[f@®)aB () = [ f(-)aZ (), (3.2.9)

and L%(B) = L%Z). One can define standard white noise as an operator W: L%(R) — L%(B)
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by
W) 4 lf (¢)dB (¢) = if(-ﬂ))ﬂ(w), f € LYR).
Now, let us define a new process Zyw, 4 {Zw, (w); ® € R} by
Zo, (@) 8 zlll"“"e-"mx”-%%dz(‘/\.), we R (3.2.10)

It follows (see, for example, [2], Chapter 2) that Zy, is a zero-mean, Gaussian process with

orthogonal increments and associated measure y given by

na) 4 -zlEflml"z”dm, A Borel. (3.2.11)
A

Let Ay < L%(R) be defined as
Ay 8 (g e LAR): § e L)} (3.2.12)

That is, Ay is the subset of functions in L%(R) whose Fourier transforms are square integra-
ble with respect to the measure u. We define the fractional Gaussian noise operator

Wy: Ay > LYZy,) by
Wy (g) élé(—m)dzw,,(m), g € Ay, (3.2.13)
and we will use the notation
lg Wy (t)dt & Wy (g).

It follows immediately from (3.2.13) that, for all f.g € Ay,

3\
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EY [ £ )Wy (e)dt [ g(s)Wy (s)ds [ = EY [ f (-0)dZ w, (®) [ § (-0)dZ w, ()

1 72 -
=_2;_L o)) lo! ™ do,

and

EY[f(e)Wy(e)ds f=E][g(s)Wy(s)ds =0.

Also, it can be shown (see Appendix A, Lemmas A.l1 and A.2) that LYR) A LYR) g Ay
and, for any f,g € LI(R) N L%R),

L f o lol ™ do=VyHERH-1) [ [f@)gGT1e-s 12 2dsd.
2r

=

Hence, for any f g € LY(R) n LYR), we have

EY [ £ Wy ()t [ g )Wy ()ds [ = = [ F-olf TNl ol -H da

(3.2.14)

= VyHQH-1) | [ f(@)gTTIe-s 1¥ 2dsdr,

e
so the operator Wy behaves like a zero-mean, stationary Gaussian process with covariance

function K'w, and power spectral density Sw,, as previously defined.

It remains to be shown that By results from Wy via (3.2.8); that is,
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!
By (t) = [Wy(t)dt =Wy o), ¥teR.
0
To this end, we recall that
gWH @dt = [ l1g,)(~0)dZ ()
- -csgn(co)(H-%)-
I (0:1-©) loi¥He 2 4Z (w)
< —isgn(oXH ~%)=
= I lm |4t 24z (w)
= [ f,(-0)dZ (W),
where
=i i H-%)&
Fo) & 12 et OIS (3.2.15)
1@

Since (04] € L), we have f, e L%(R), and it is straightforward to verify that the inverse

Fourier transform of f , is given by

1

—— H-% H-% H-%
T(H+%) [[(—u,O)(t)(lt—’tl - Izl ) + 1[0.,)(17)“—’“ ], te R.

fi(®=
(3.2.16)

It follows that
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t o
[Wymde= [ f(-0)dZ (@)
0 —oe

[ f1(0)dB (v)

0

!
| [ (t—etH=% = 121 %)aB (1) + 11—t iH~"%aB (1)
- 0

T TH+%)

= BH (t )’
as desired.

We close this section with a brief discussion concerning stochastic integration with

respect to FBM.
Let By be an FBM and let {®,}.~; be a sequence of partitions of a compact interval
[a,b] with mesh size going to zero; that is,
Ky, ={tg " dpi@=tg<t;< -+ <, <t =b},
where

lim ix, | = lim max (; —f,_;) = 0.
N —3ee n~es 1<i<n

If f is a bounded function defined on [a,b], we can define the integral of f with respect to

By, in the usual L2-fashion, by
b n
[f mdBy (1) & lim ¥ f E)[By &) - By (G-l & e [kl
a R (=)

Of course, the integral is only well-defined if the right-hand limit exists and is the same for
all sequences of partitions (&, },.; with Ix,!| — 0. We can also define "improper” integrals

as limits of "proper" ones; for example, if f is bounded and integrable with respect to By on
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all compact intervals [-T,T}, then

- T
[f@dBy(%) & lim [f(0)dBy(v),
— T o -T

whenever the right-hand limit exists.

Now, let Wy be the FGN corresponding to By. We wish to establish some relation-

ships between the operator Wy and integrals with respect to By.

Lemma 3.2.1: If {f, ), cLY(R) N L%R) is a sequence of functions that converges

in LY(R) and L%(R) to a function f, then

lim [f,@Wy@dt= [f@Wy@dr. (3.2.17)

Proof: Let u be the measure defined by (3.2.11). Recall that

2 2
E{| [fa@Wydt~ [f@Wy@dt| p=E{| [ fa®) - F@IWy(t)dT

If (@) = f (@) 1210l .

f—

L
2n

Hence, to prove (3.2.17), it is sufficient to show that fn - f in L%(n). To this end, notice
that, since f, = f in L'(R) and L%R), f, —» f uniformly and in L2(R). So, for any

E>0,
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L] v l
?l-j (@) - f(m)lzlmll‘z”dms——jlf,,(m) - F )l de
1 5 T
-5—_[_ fa(@) = f (@)1 2w
1 1
-_— Ielml - g + -2';8 (for sufficiently large n)
1
= 2H
w(2-2H)

Therefore, f, — f in L2(1) and (3.2.17) follows. ®

Lemma 3.2.2: If f is a bounded function, continuous almost everywhere on a compact
interval [a ,b], then

b b
[f @By (%) = [f (OWy (0)d 1.

Proof: Let {r, }:%; be a sequence of partitions of [a,b] with Ix, | — 0. Then

b

[f @dBy (%) = lim 3 €)Bu (6B (1))

a = =1

hm zf(g,) j Iy Wy (D)dT
= =l

hm f [):f (397 FATC)) ]w,, (t)dt

i=1

lim j fa(®OWy (0)d,.

where
F2@ A Tf Gy .
i=1

Now, since f is continuous almost everywhere on [ab], f, = fI(, ) almost everywhere on
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R, and, since f is bounded, the dominated convergence theorem implies that f, — fl(, ) in

L'(R) and L¥R). Hence,
b L _J
[f OdBy (@ = lim [ fo Wy (D)t
= Iz 5)(0f ©Wy(DdT (by Lemma 3.2.1)

b
= If ©OWy(t)dt. m
a

Lemma 3.23: If f € LIR) n L%R) is bounded and almost everywhere continuous on

R, then

[f@dBy (@ = [ f@Wy ().
Proof: By definition,

- N
[f @dBy () = lim [f(1)dBy(v)

N
= lim [f(@Wy(tdrt (by Lemma 3.2.2)
N—)" -'N

= lim l fn(OWy (DdT,
where

v & F @Oy (0.

Clearly, fy — f in L'(R) and L*(R), so
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Jf@dBy(@) = lim [ fy@Wy(mds

= [f@Wy(dr (by Lemma 3.2.1). ®

These lemmas are, of course, not exhaustive, but they illustrate that, for sufficiently

well-behaved functions f, the random variable Wy, (f) is equivalent to the integral of f with

- respect to By.

3.3. RKHS Resulits for Fractional Brownian Motion

In this section, we characterize the RKHSs for the class of FBMs and present some
related results. In particular, we develop several results concerning the restriction of an FBM
to a compact index set [0,T'], which will be directly applicable to the problem of detecting
signals in FGN. We begin by considering the unrestricted FBM process, in which the index

set is IR. For this case, we have the following result.

Theorem 3.3.1: Let By be an FBM and let y be the measure defined by (3.2.11). Then

H (By;) consists of functions of the form

o .
elm

2(t) = 51; Lol 4o, teR, (3.3.1)

io

where § € Lz(u). Further, for all g,h € H(By),
1 ;- _
& haen= 5o [r@f@iolHdo. (3.3.2)

Proof: Let Wy be the FGN corresponding to By and let Zyw, be the orthogonal incre-

ments process related to Wy by (3.2.13). Then

e
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Kg,(5.4) = E(By ($)By )}

s

= E1 {WH (t)dcj Wy (t)dt

= E\ [ 10,/ 0)Z w, (@) [ F10,)(-)Z w, (@)

1 7: e -

= ias_y jiol_q1
=—1—Ie_ le. Lo 40,
2n, i io

it

It can be shown (see Appendix A, Lemma A.3) that the set of functions { e 1 ;e R)

spans L3(u), so (3.3.1) and (3.3.2) follow by applying Theorem 2.1..1. n

Theorem 3.3.1 gives a frequency-domain characterization of H (By). The following
corollary gives the corresponding time-domain characterization.

Corollary 3.3.2: A function g € H(By) if and only if there exists g* e L%R) such

that

=1 H-%
80 =il j j (s "gFm)dds, YreR (3.33)

Further, for all g ,h € H(By),

8 @,y = [ h*s)g¥0)s. (3.3.4)
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Proof: By Theorem 3.3.1, g € H (By) if and only if there exists g € L) such that,

forallt € R,

= i _ ' _
g(r)=—1—-j £ = Lr@yo#do

o . , ® . T
= [1"’-'“ |m|’/*-”e'm(m)(ﬁ%)7] [ﬁ(—m)lml"*‘"e‘mmxﬂ'm? do

where

isgn(wXH -1/;)-’2E

(cf. (3.2.15)),

.

2 A 1—e—i* Yt
w) = ol
fi(w) T® €

and

i sgn(o)H -14)=
" Bz(-u)al¥ e LS

Clearly, f e L%(R), so let g* denote the inverse Fourier transform of ¢ * and recall from

(3.2.16) that the inverse Fourier transform of f , is given by

1

———————— H-% H-Y H-t
T(H+%) [1<_..,o)(t)(lt—¢l = 1T 4 I g @) 11l ﬁ], te R.

fi(®=

Hence,
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gl) =

==L | [(lr—rIHH - |t|"-‘ﬁ)g'fz'$dr+j|:—¢|”-/=gTdr

= I‘(H s b j j(s-»r)”- g *()dds,

which proves (3.3.3).
To prove (3.34), we proceed in a similar fashion. Let g,» € H(By) and let

Z.h € L) be given by Theorem 3.3.1. Then (3.3.2) yields

h(@F@lol#de

j—1

Iy B\ =L
8 h/"(nn)- 2

i sgn(w)(H -%)% ]

) sy isgn(o)H W)=
h—w)lol%He o 7'][?(—(0)Iml"“'”e do

L
2r

j—1

h*(@)§ ¥ (@)} o (h*3* defined as before)

j—13

L
2z
= [h*mg*mdr,

which proves (3.3.4). B

Remark: Notice that (3.3.3) implies that any function g € H(By) is differentiable
almost everywhere in R and that the derivative g’ is the (H ~%)* —order fractional integral of

g*. That is, for almost all r € R,

.
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t
g'tt) = F(H_I-TZ)' [ ¢—fgFmyd. (3.3.5)

—~—00

Functions of the form (3.3.5) are variants of the so-called Riesz potentials, which have been
widely studied (see, for example, [59]). This representation can be exploited to give various

conditions necessary for g € H(By). For example, it follows from (3.3.5) and a general A

1
form of Young’s inequality (see [15], page 232) that g’ € L ¥ (R). Similarly, from (3.3.1)

we can get a simple sufficient condition for g € H (By). Letting §” be the Fourier transform

of g’, it follows from (3.3.1) that g € H(By) if §” € L!(R) and

[12'@) 1ol 1de < -,

The following theorem gives an infinite interval whitening filter for FBM.

Theorem 3.3.3: Let B be a standard Brownian motion and let By be an FBM derived

from B via (3.2.1). Then

0 t

L | [ (% - %1y () + [l %M a8, ) | (33.6)
o 0

B®) = Temm

Proof: Again, let Wy be the FGN corresponding to By, Zy,, the associated orthogonal
increments process, and p the measure given by (3.2.11). Also, let Z be the orthogonal incre-

ments process related to B by (3.2.9). Then, forallt € R,
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4
B(t) =jd3(:)

0,: ](-m)dZ ((0)

isgn(XH )%
o,l(—co)lml” e 247y, (@) (by inverting (3.2.10))

‘—»: l-——.l

= gim tsgn(m)(H—’A)l .
= je L i, 2z, (@)
= [ fi(-0)dZw,(w),

where

—i sgn(o)(H -vx)-’z_‘

- A 1 e-iu! H-%
w) = - [0} (4
Fuiwn & 2222

Clearly, f, e L2(y), and it is straightforward to show that f, € L¥R) with-inverse Fourier

transform f, € L1(R) N L¥(R) given by

fi(®)= -I:(gzl__—;{—) l:l(...,o)(f)(lt-'tl"‘"” - et )y 4 [ @ e—1 ¥ H ] te R.
If we let
é 1-[ - I ’ R’
fn(@E [ [_%'_}%_](T)] [1 1[‘_%"%](")] -~ N (D) Te

then fy = f, in L'(R) and L%(R), and
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B(t) = [fi(-w)dZw,(®)
= J' f(OWy(tdt
= Nlim [fy@Wy(mde (by lemma 3.2.1)

= I\}im [ Fn(®)dBy (%) (by lemma 3.2.3)

[f:(©dBy ()

0 t

L | [(1e—e1%H - Itl""’")d.BH(t)+£It—¢l"‘“”dBH(t) =

" TCr-H)

We now consider the case of an FBM restricted to a compact index set [0,7]. Let By,

be an FBM and let By 7 4 {By IT(t).; t € [0,T]) represent the restriction of By to [0,T]. It
is well-known that H (B ) must consist entirely of functions in H (By) restricted to the
interval [0,7]. Unfortunately, this is not a very practical characterization, since it is typically
rather difficult to determine from its values on [0,7] whether a particular function can be
extended to all of R in such a way that the extension is a member of H (By). Fortunately,

there is a more useful description of H (By 1), as the following theorem shows.
Theorem 3.3.4: H (By 1) consists of functions of the form

t|t

1 o H~h Yt
g(t) = r(H-vs)g :[1:" (t=s Y Pdr [FG Y ds, t € [0.T), (3.3.7)

where ¢ € LY[0,T]). Any such function g has a derivative g’ almost everywhere in [0,T],

and, for almost all ¢t € [0,T],
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— d 1
g(:)=z"-‘ﬂ-‘;{ m{(t-—s)*’”s%‘”g’(s)ds ) (3.3.8)
Further, for any g ,h € H(By 1),
v .
'8, @, = [ROFEA". (3.3.9)
0

Proof: Since By 7 is the restriction of By to [0,T], we have, for all s,¢ € [0,T],

KB””,(S J£) = KB”(S )

17+ —
= 'i?:'! s~ g (-l Hdw
T
= Vg H QH - 0,510V (0,)®)17-01¥ 2 do (by (3.2.14))
00

_ ~-I'(2-2H YcosrH
T

st
[[1t-01¥#2ddo (by (3.2.3)).
00

The function 176122 can be decomposed as (see [75], Equation (15))

min(o,t)
(op)fi-* f w2 (g YH (g ) gy,
0

W2 _ Ir'Ce-H)
101" = T re2m)

Hence,
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st
K gy (5 ) = EZLIOTH (M2 nd
min(o.'t)
- ‘rg’z;l” 3/‘;;?‘” [ j(m)” S| [ ut M (- M) du |drd o
0
2 min(s.t) rs t
= [ T %)] [ w2 |[oHAo-uydo | [t 4(r—u) d 1 |du
0 “ u
T
= [fs@)f (u)du,
0
where
f,(u)é-f,—(Hl_—%)I[o,](u)u fz” “Ar-u ), (3.3.10)

It can be shown (see Appendix A, Lemma A.4) that the functions {f,;t € [0,T]} span
L%([0,T]), so (3.3.7) and (3.3.9) follow from Theorem 2.1.1. To establish (3.3.8), we choose

an arbitrary function g € H (By ) and use (3.3.7) to write

t 1t

-1 oy HN Yol
g(t)= I'(H—'/z)g !‘L‘H (t-s)""dz|g(s)s ds

F(H syl J't”“"‘ j'(c —s Y5 YH 5T5Yds |d .

It follows that, for almost all ¢ € [0,T],

4

oy = L H-Vaf,,  \H-%_ Y%H
') = T oyt g(t s s A (s )ds.

Hence,
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4

' s
[ -s) 5 H s H g Y5 )ds = i [e-s)H = [(s-u) P H FTaydu s
0 0 0

rea-th TCh-H) T(H-%)
1 y t
= I'(3/2_H)F(H_%) ‘([uvz_Hm J'(t__s )‘A—H (s —u )H-hds due
t
= [t g'TTu du.
0

Therefore, for almost all ¢ € [0,T],

t 4
H-»d 1 V- JVa-H ¢ H-wd ¢ wH
t — | cnt————— — - —
e H)-(’;(t )T s T g(s)ds | =1 gu g Ww)du

=3(t),
which proves (3.3.8). ®
We can also find a canonical representation for By 7, different from (3.2.1), which leads
straightforwardly to a finite-interval whitening filter, as follows.

Theorem 3.3.5: Let {f,;t € [0,T]} be as defined in (3.3.10). There exists a process

Br a {Br(t); t € [0,T]), which is a standard Brownian motion on [0,T], such that, for all

t € [0,T],
T
By r(t) = J'f_.(u)dBT(u)
0 . , 3.3.11H)
= T‘EHI—_‘/Q){“H {‘EH J"’(‘t—u )H-%d‘t dBr(u),
and
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1 ! T
Br(t) = o) gd"-*d,(j)(«:-u)*—” u HdBy 1), (3.3.12)

where the integral in (3.3.12) is to be interpreted as an integral with respect to the orthogonal
increments process Zy 4 {Zr(¢); t € [0,T]} given by
t

[e-o* % dBy 1 (v), t e [0,T). (3.3.13)
0

1
Zr®) = T

Proof: From the proof of Theorem 3.3.4, we know that
T
Kp,,(5.8) = [fo()f (u)du, Y5t e [0T)
)

It follows from Theorem 2.1.2 that there exists a zero-mean, orthogonal increments process
By & (Br(t); t € [0,T]) with associated measure Lebesgue measure such that
T
By r(t) = gf,(u)dBT(u)-
Since the functions (f,;t € [0,T]} span L%{0,T]), Theorem 2.1.2 also guarantees that
L*By,7) = LY(B7), which implies that By is Gaussian. Hence, By, is a zero-mean, Gaus-
sian, orthogonal increments process on [0,T] with associated measure Lebesgue measure. It

follows that B is a standard Brownian motion on [0,T], which proves (3.3.11).

To prove (3.3.12), we define a new orthogonal increments process

Zr 8 (Zr(t); £ € [0,T]) by
4
Zr(r) 4 [v* 4 dBr(v), t e [0.T]. (3.3.14)
0

This definition implies that




4 .
Br(¢t) = ft'*dz;y (v), ¥t e [0T], (3.3.15)
0
s0 (3.3.12) will be proven if we can establish (3.3.13); that is, if we can show that

4

Zr(t) = I.Ghl_H)j'(t—'t)"*‘”t"“”dBH.T(t), ¥t e [0T]
0

To this end, let {x,},>; be a sequence of partitions of the interval (0,T] with In, | — O.

Then, for all ¢t € [0,T],

t T
1 1 1 1 1
T [t At gy () = im ] = [l -4 H 24 dByy (1)

l 1
= o, _l"(’/z 5 2t GE G By 7(5,)-By 17 i)

= lim lim s r(% i 2 ztw.e](g. (t-é.)*‘”i.*‘”f[ft,(u)—ff,._‘(u)]dBr(u) (by (3.3.11))

T

= lim lim —-—l—j‘
£=0 n—e T'(Ch-H)
T

1
ég’no TC—H) I {hm Yl es-g&)0 % WAHEAHf )~ o, (4 )]} dBr(u)

{):Ile,.ﬂ@, We=E) A HEAHIf  ()~f o, (u )]}dBr(u)

[a—n*He4H d f (u)

T [t-€
g F(’/z-H);‘; ! dBr(u)

dBT (u )

Tt
. VoH JA-H
- I"("’/z-H) (J; [f').(t —'t) T d‘tf‘t(u)

Now, it is straightforward to show that

4
e et d f (u) = I

CCr-H)

whence it follows that
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t T|:

x 1 Vel Y
g(t—m)'*‘"t*‘"dB,,,T(t)=m_—H—)£ g(:-c)ﬁ-”zé-"dJ,(u) dBy(u)

1
I'C-H)

T
= (11, ¥ dBr(u)
0 .

-

= fuH dBr(u)

(=]

=Zr(t) (by (3.3.14)).

This establishes (3.3.13) and proves the theorem. W
The previous two theorems admit the following useful corollary.

Corollary 3.3.6: Given any g € #H (By 1), the comresponding element in L%By 1) is

given by

1 2T d t t
By irs 8 2z |——— | [ L[t g (t)d |d, [(r-1)4 ¥ dB :
\Py 11> 8/8By1r) [I‘(3/2_H) £ dtg( ) 4 (v t,(’)‘( 1) HIT(t)

(3.3.16)

Proof: Let By and Z be as in the proof of Theorem 3.3.5. It follows from Theorem
2.1.2 that
T

By 8@ Byy) = t‘;?(f)dBr(f),

where § € L%[0,T]) is given by Theorem 3.3.4. Hence,
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T
By r» 8}.(3,,.,) = !;g(t)dBr(t)

:
T 3
= ——1—— H-%4 i o-H Jo-H 7
- r(3/z-H)£’ d;g("‘) T g (vt (dBr () (by (3.3.8))
T -d y
-— f2H-1}| & Yot JVa~H 7
- r(‘-*/z-H)(J;' d;g(“") T (T)dtjdzr(t) (by (3.3.15))

2T t t
1 w-114 Yo Yol ¢ Y J4-H
[I‘(’/z—-H)] g: l dtg(z-m) 4 g'(v)d d,(j)(:-c) AHAB, (1) (by (3.3.13)).

which proves (3.3.16). W

Remark: The RKHS H (By,7) was also studied in an early paper by Molcan and Golo-

1
sov [38], in which it is claimed that f € H(By ,7) ifand only if f' € L 1-H([0,T]). This is

certainly a necessary condition (as discussed in the remark following Corollary 3.3.2) but does
not seem to be sufficient. Molcan and Golosov also give a canonical representation for By 7,
which is essentially equivalent to (3.3.11) and (3.3.12); however, the result is presented

without proof.

3.4. Detection of Deterministic Signals in FGN

In this section, we consider the problem of detecting a deterministic signal in the pres-
ence of additive FGN on a compact observation interval [0,T). This corresponds to the fol-

lowing hypothesis testing problem:




37

Hy: dY (t) = dBy (), t € [0,T]
versus (3.4.1)

Hy: dY(t) = s(t)dt + dBy (1), t e [0T],

where Y 2 (Y(¢); t € [0,T]) is the observed process, By ,r is an FBM restricted to [0,T],
and s is a real-valued function defined on [0,T]. Problem (3.4.1) can be stated more

rigorously as

Hy: Y(t) =By ,7(1), t € [0,T)
versus (34.2)
Hyi: Y(@)=m(t) + By 7(2), t € [0,T],
where
¢
m(t) 4 gs (vd. (3.4.3)

We would like to know

(i) under what conditions on the signal m is Problem (3.4.2) nonsingular, and

(ii) in the event that (3.4.2) is nonsingular, what is the formula for the likelihood ratio?
We can make use of the results from the preceding section to answer (i) and (ii), as follows.

Theorem 3.4.1: Problem (3.4.2) is nonsingular if and only if

[ K

1 f jt"“"‘(r—o)”""dr m(o)o¥Hdg, ¥re [0T], (344
0o

m() = T
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where /s € L%([0,T]), and, for almost all r e [0,T],
d 1
sy = HBE |2 Vo J4H v 4.
) = r(%—H){(H) v m'(td ). (3.4.5)

Proof: Since m is real-valued, Y is Gaussian with covariance function Ky =Ky,

under both hypotheses, so Problem (3.4.2) reduces to

Ho: Y has mean zero

VErsus

HI: Y has mean function m.

Hence, by Theorem 2.1.3, (3.4.2) is nonsingular if and only if m € H(Y). Since

Ky=Kp,, we have H(Y)=H(By7), so (3.44) and (3.4.5) follow immediately from
Theorem 4.4. B

Theorem 3.4.2: If m satisfies (3.4.4) so that Problem (3.4.2) is nonsingular, then the

likelihood ratio is given by

L(Y) = exp kY, mg ) - % m, m)nm], - (3.4.6)
where
/ \ 1 | 2T2H L] g 2
im, mg = [m gz N g(z-c)ﬁ-” Hm (vydz | d, (3.4.7)
and
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4 4

2T
/ NI 1 w11 d Vol o-H 7 YomH YoH
Y, mpgy = [-1:(-3;-_7{—)] ‘([t E—g(t-'t) o4 Hpy(t)de d,g(t-’t) 4 H gy (v).

(3.4.8)

Proof: If m satisfies (3.4.4), then m € H(Y) = H(By 1), and (3.4.6) and (3.4.7) follow
immediately from Theorems-2.1.3 and 3.3.4, respectively. To prove (3.4.8), we will show

that for any function g € M (Y),\Y, g gy is given by

Y, 8wy = 9@)

2T i ‘ (349)
A .._.1_ 2H-1 _‘i Vool Yol ¢ Yomll Yok
= [r(%-y)] (I,‘ ldt‘{(M) T g (nd d,g(t—fc) 4H gy (v).

Equation (3.4.8) then follows by letting g = m. To prove (3.4.9), it is sufficient to show that

(cf. 2.1.1))

8(¢) = Cov(Y (1), &(g)]

= E{[Y (O)~E(Y ())116(2)~E (¢ )}]}

= E{BH i ()0 )-E{¢(g)}]}.

However, it is clear that

2T t t
= |1 | |4 Vol oH ¢ Vel YomH
®(g)-E{¢(g)) [F(3/2—H) gt [dti‘;(t-at) v g’ (v)d d,£(t~4:) 4" dByy (1)
=By T, 8 @By (by (3.3.16)).

Hence,
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E{BH 170G -E{o(g )}]}= COV{BH @), By rs 8>n(n,,.,)}

=g() (by (2.1.1)),

and (3.4.9) follows. ™

For the sal;e of completeness, we give below a corollary to Theorem 3.4.1, which is sim-
ply a restatement in terms of the signal s =m’. The results of Theorem 3.4.2 are already in
terms of m’ so no restatement is given.

Corollary 3.4.3: Problem (3.4.1) is nonsingular if and only if, for almost all ¢t € [0,T],

t

..__1__ H-% H o] =
s = FrTm" g(t—a:) “hetH 5 (), (3.4.10)

where § € L%([0,T)), and, for almost all ¢ e [0,T],

t
5(0) =oH “"-g;- F%l:-H—)j’(t—'t)%'” ™ s(vyd|. (3.4.11)
0

Proof: Problem (3.4.1) is nonsingular if and only if (3.4.2) is nonsingular, and (3.4.2) is
nonsingular if and only if m satisfies (3.4.4). It follows from the proof of Theorem 3.3.4, that
m satisfies (3.4.4) if and only if s =m’ satisfies (3.4.10). Equation (3.4.11) is simply a
restatement of (3.4.5) in terms of s. W

Remark: As a practical consideration, the representation of the likelihood ratio given by
Equations (3.4.6) through (3.4.8) is probably rather difficult to implement. One would prefer
to use a matched filter implementation, if possible. This is easily done if s is sufficiently

well-behaved. For example, suppose
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T
s() = VgHQH-D[h(0)1z—71¥ 241,
0

where h is a continuous function on [0,T]. It then follows immediately that the likelihood

ratio is given by (3.4.6) with

T
X, mgy, = gh (v)dY (1), (3.4.12)
and
T
m, mygyy = Vg HQH-1)[[r A (0)1t—01 ¥ U do. (3.4.13)
00

Of course, in this case, even if Y is non-Gaussian (but with the same covariance function

Ksg,,.), the statistic Y, m),,(y) given by (3.4.12) is the linear statistic with the highest signal-

to-noise ratio.

3.5. Detection of Gaussian Signals in FGN

Let X4 (X(t);t e [0,T]) be a process observed on a compact interval {0,T]. In this

section, we consider the following hypothesis testing problem:

H,: X is Gaussian with mean zero and covariance function K,
versus (3.5.1)

H;: X is Gaussian with mean function m, and continuous covariance
function K ;.

This problem can be regarded as a generalization of the problem of detecting Gaussian signals

in white Gaussian noise, which has been widely studied. We will see that the nonsingularity
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conditions for the detection Problem (3.5.1) are closely related to the following well-known
result of Shepp [58].

Theorem 3.5.1: Let XA (X(); ¢t e [0T]} be a Gaussian process and let
Ko(t,s) = min(t,s) for s € [0,T]. (Recall that K is the covariance function of a standard

Brownian motion on [0,T].) Consider the following hypothesis testing problem:

H,: X has mean zero and covariance function K 0
versus (3.5.2)

H,: X has mean function m; and continuous covariance function K.

This problem is nonsingular if and only if the following three conditions are satisfied.

(i) There exists a function ¢ € L2([0,T] x [0,T]) such that

ts

Ky = Ko)t.s) = [[o(r.0)d od, Y15 e [0T].
00

(ii) If o(®d) represents the spectrum of the operator determined by the function ¢, then
-1 ¢ o(d).
(iii) There exists a function m; € L?%([0,T)) such that

4

my(t) = [y (Ddt, ¥t e [0T)
0

The function ¢ is unique and symmetric and is given by

2
o(t.5) = gsf’—a;[(xl — K]

for almost all (t,5) € [0,T] x [0,T]). The function /1, is unique and ‘s given by
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A (e) = -;‘;m(r)

for almost all ¢ € [0,T].

Shepp also gives formulas for the likelihood ratio in the event that Problem (3.5.2) is
nonsingular. We wiil show that, if Problem (3.5.1) is nonsingular, it can be transformed into
an equivalent problem of the form (3.5.2), in which case, the likelihood ratio can be found
using one of Shepp’s formulas. We begin by giving a characterization of the RKHS

”(Knmr) ed (Ker)'

Theorem 3.5.2: Let the set of functions {f,; ¢ € [0,T]) be defined by * 3.10). Then

HKXp, ) ®H(Kpg,,) consists of functions of the form

T
g¢.s) = [[f,(0f (@)F T ad, ts e [0,T], (3.5.3)
00

where § € L¥[0,T] x [0,T]). Any such function g is twice differentiable almost everywhere
in [0,T] x [0,T] and, for almost all (¢,s) € [0,T] x [0,T],

ts

2
tH—%sH -%_‘UT%-H O.‘A—H (t _,t)‘ﬁ—H (S _o)‘/z—H
ds ot i

2
Jooe g(t,0)dodr.

= _ 1
gt.s)= [—I‘(%-H)

(3.5.4)
Proof: Recall from the proof of Theorem 3.3.4 that the functions {f,; ¢t € [0,T]} span
L%[0,T]) and

T
Ker(t’s) = If,(u)f,(u)du, Yts e [0T]
0




44

It follows that the set of functions (f (ts) (t',s )e[0,T] x [0,T]} given by
f 45 (®0) & £, (0)f (o), 1.0 € [0.T],

spans L%([0,T] x [0,T]), and

T
Kgye 150K B, (1259 = [[f ,4(®.0)f ¢, rp(T.0)d 0T, ¥ 1.5 € [0T]
00
Since
K((14245159) = K, 150K p, (25, 5 € [0T],

is the reproducing kernel for H (K B,,) ® H(Kpg, ), it follows from Theorem 2.1.1 that a
function g e H(KK er) @ HK By,) if and only if there exists a function

g € LY[0,T] x [0,T]) such that, for all t,5 € [0,T],

T
8(t.5) = [[f o s \n.0)FTB)dod
00

T
= [[f.(0f ;(0)F T O)d 0d.
00

This proves (3.5.3). To establish (3.5.4), notice that, if g satisfies (3.5.3), then

T
g(ts)= Hf 1 (Df;(0)g(t,0)dodt
00

r 12 s t s
= __I'T_ H v4H I ul Al gy | |o¥H J'v” “Av-o) Mgy |FR,6)dod 1
1 21ts uv
= |=m | e A o4 0% w R o) g o) d od T |dvdu,
_I‘ (H-'%) 1 % 20

It follows that, for almost all (¢ ,5) e {0,T] x [0,T],
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2 ts

1 tH-%gH ""ﬂt"“‘" o (o) (s~ MFT,0)d od.
00

? _
3538 ¢ = [I‘(H—‘A)

Equation (3.5.4) follows straightforwardly by using the above formula. W

We can now prove the following theorem, which is analogous to Shepp’s result for sig-
nal detection in white Gaussian noise.
Theorem 3.5.3: Problem (3.5.1) is nonsingular if and only if the following three condi-
tions are satisfied.
(i) There exists a function ¢ € L2([0,T] x [0,T]) such that
T
(Ky = Kp, Xt .5) = gf; @f,(O)}(to)dadt,  Yis e[0T  (355)

The function ¢ is real and symmetric, and, for almost all (¢.s) € [0,T7] x [0,T],

) .
¢(I,S) = [___l__] tH—’AsH-’A

TCh-H)
2 v 32 (3.5.6)
T gt%_ﬂ o H (1) (s—c)H So3: K1 = Kp,,Nn0Mod.

(ii) If o(d) represents the spectrum of the operator ® determined by the function 9,

then o(P) < (—1,%).
(iii) There exists a function m, € L%([0,T']) such that

t ¢

[ H [y Ay |mydT, Yre [OT).
0 T

ml(t)=F(i-l-‘—/z)

3.5.7)

The function /1, is real, and, for almost all ¢+ € [0,T],
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t
= oy = H-% 4 1 Vol YoH s
(1) = 8o l_(%_H)g(z-c) ol m (vdt]. (3.5.8)

Proof: It follows immediately from Theorem 2.1.4 that Problem (3.5.1) is nonsingular if

and only if

i) (K,-Kpg,,) e HKpg, )@ H(Kp,, ),

(ii) There exist constants 0 < ¢ < C < o such that <K« K ; « CKy, , and

(iii) m; € H(Xy, )
Clearly, by Theorem 3.5.2, condition (i) is equivalent to (i), and it follows from Theorem
3.3.4 that condition (iii) is equivalent to (iii"). The theorem will be proven if we can show

that condition (ii) is equivalent to (ii"). To this end, let ¢ be given by (3.5.6) and let the

linear operator ®:L2([0,T]) — L%([0,T]) be defined by
T
(@g)() = [8(z,m)g (1), te[0T],
0

where g € L2([0,T]). The operator @ is then compact and self-adjoint with ||| < |loll,.
Further, 6(®) < [-lI®}], I®ll ], and if A € o(®), then A =0 or A is an eigenvalue of ®.
Finally, if (A, ).z is the set of eigenvalues of ® and {e, },.; the associated set of orthonor-
mal eigenfunctions, then zero is the only accumulation point of {A,};%;; {e,},=; spans

L*[0,T)); and

06 5) = T hnen)ETT, ¥ s € [0T],

n=1

where the above convergence is in L%[0,T] x [0,T]). (These standard properties of L?

integral operators are discussed, for example, in [41].) We are now ready to show that (ii) and
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(ii") are equivalent.
(i) implies (ii): Suppose there exists ¢ <0 such that (K, - cK'g, ) is nonnegative

definite, and let A be an eigenvalue of ® with associated (unit) eigenfunction e. Since

{f,; ¢t € [0,T]) spans L2([O,T]), there exists a sequence of functions of the form
N
fn@ = Xaif, (0, te€ [0,T],
i=1

which converges to e in Lz([O,T]). Now, let 8 be the Dirac delta function and recall that
T T
K, ¢5) = [f,(0f ;@dT = [[f,(0)f ,(0)8(r-0)d od .
0 00

Then,

T
A+ (1-c) = [[e(@)ETMNY(r,0) + (1-¢)(t-0)]d od T
00

Try N
= lim [f [}:a,-f,,.(o)] [za,-f,,(r)]wr,c) + (1=c)3(1-0)ld od T

—* 00 |i=1 j=1

N
= lim Y 4;3;(K, - cKp, ) L)

N =300 "'j=1

20,

and it follows that A 2 c-1 > ~1. Hence, o(®) < (-1, [[D|| ] and (ii") implies (ii).

(ii) implies (ii"): Now suppose that o(®) < (~1, |I®|| ]. Let the sets {q;} ,-Zl and (¢} ﬁ]

be arbitrary and define
A Y
v 2 Ya;f,(v), te [0.T].
i=1

Then
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N mTry .
> 4,3 (K, - cKp, Nt 4) = [[ | Zaif,0) || T a;f,, (0 |[#(t.0) + (1-¢)8(1~0)ld od T
i,j=1 00 |i=1 j=1

T

= [[en (@)en D6(r.0) + (1= )8(t—0)ld od T
00

= )'f,[x,, + (1=¢)] gy, 12

n=1

2 {inf (A, Jozy + (1~¢)] llgw 13

>0 ifc <1+inf (A, ).

Since -1 cannot be an accumulation point of the set {A,},z;, we always have
inf {A, }az1 > -1, and we can find 0 < ¢ < 1 +inf {A, },;=; such that (K; - cKg, ) is nonne-

gative definite. Similarly,

T

N —_—
Y, a;3;(CKp,,, — K1) tj) = [[an(0)gnDUC-1)8(—0) - ¢(t.,0)ldod T
i.j=1 00

= TUC-1) = Aallign.en1?

n=1

2 [(C-1) - 1Dl ] lgw 113

>0 ifC >1+]|dj

Hence, we can find 0 <¢ < C < such that cKp,  « K| « CKp, . It follows that (ii)
implies (ii"), and the theorem is proved. B

We now wish to investigate the possibility of transforming Problem (3.5.1) into the more

familiar form (3.5.2) considered by Shepp.

Theorem 3.5.4: If Problem (3.5.1) is nonsingular, the transformation
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[ 4 1
1 .
Z(t) & ———— [P %4 f(-u) 5 uH dX (u), t € [0,T], (3.5.9)
[Cr-H) £ =£

is well-defined under both hypotheses. The integral in (3.5.9) is to be interpreted as an
integral with respect to the process Y 8 (Y(t); t € [0,T]} given by

4

[ A X (), t e [0,T]. (3.5.10)
0

A1
YO 2 To-m

The new observation process Z 4 (Z(t); t € [0,T])} is Gaussian, and the transformed

hypothesis testing problem becomes

H,: Z has mean zero and covariance function K o(z,s) = min(z,s).
versus (3.5.11)

H;: Z has mean function mz and covariance function K ¢,

where
4
ma(t) = [ (D7, t e [0T], (3.5.12)
0
ts
K7(t.5) = [[o(r,0)d 6dt + min(z 5), ts € [0.T), (3.5.13)
00

and ¢ and /m, are given by (3.5.6) and (3.5.8), respectively.

Proof: It follows from Theorem (3.3.5) that, under H,, the transformations defined by
(3.5.9) and (3.5.10) are well-defined, resulting in Z being a standard Brownian motion on
[0.,T]. Further, since Problem (3.5.1) is assumed to be nonsingular, it follows that (3.5.9) and
(3.5.10) are also well-defined under H, (see, for example, [7], lemma 2.4). So we need only

to establish that, under H,, Z has a mean and covariance given by Equations (3.5.12) and
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(3.5.13), respectively. To this end, let Y be as defined as in (3.5.10) and notice that, under

H,, Y has mean function

4 4
1 1 ’ -~
my(t) = mg(t—c)""“ v Hm (vdt = gt”'” (v, t e [0,T],

(3.5.14)
and covariance function

2ts

_ 1 YomH YoH Vel ol O
Ky(ts) [I‘ Ot g(t -1) 1 (s—0) o S0t K (t,0)dodr, ts € [0,
Clearly,

Kyts5) = (K; - K, )t:5) + K, (5.5,

and it follows from the proof of Theorem 3.3.5 that

21¢s
1 i gy o | L Yot PH Vel ot _ O g
ey G [I‘(’/z—-H) g(t—a:) P (s-0)*H " =Ky, (vo)dod T

Thus, using these relationships and (3.5.6), we get straightforwardly that

ts

Ky(t.s) = [[e#H o ¢(r,0)dodt + min(r 2 522, st e [0T].
00

2-2H
(3.5.15)

Hence, we have established that, under H,, process Y has a mean and covariance given by

(3.5.14) and (3.5.15), respectively. Now, writing Z as
t
Z(@t) = [t ay (v), t e [0,T],
0

and proceeding in a manner similar to the above, it follows straightforwardly that, under H,,
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Z has a mean and covariance given by (3.5.12) and (3.5.13), respectively. This establishes

the theorem. W

We have shown that, if Problem (3.5.1) is nonsingular, (3.5.9) can be used to transform
Problem (3.5.1) causally into the form (3.5.2), which corresponds to the problem of detecting
a Gaussian signal in white Gaussian noise. Furthermore, since (3.5.9) is invertible under H,
(via (3.3.11)), the two problems are equivalent. Since Shepp has given formulas for the likeli-
hood ratio for Problem (3.5.2), we have a characterization for the optimal solution to Problem

3.5.1).

As a final consideration, we restrict our attention to a special case of Problem (3.5.1). In

particular, we assume that, under H,, X is Gaussian with m; =0, and

K.its)= %i “::D‘l ;?;—:l—sl(m)dm, ¥ 1.5 e [0T], (3.5.16)
where S, is a spectral "density" satisfying
mﬂf lw!”S(w) >0, (3.5.17)
and
1%3—);:10) < oo (3.5.18)

for some integer n. The restriction that m, = 0 is not really necessary, merely convenient,
while conditions (3.5.16) through (3.5.18) simply imply that, under H,, the observed process
has stationary increments with well-behaved spectral densities. (See [77] and (78] for a dis-
cussion of processes with stationary increments.) These conditions are not very restrictive,

and when they hold, the observation process X can be defined as
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t
X(t) = [W(mdt 2 Wl,), t e [0OT],
0

where W is a generalized stationary Gaussian process.

If we let Sw,, be the spectral density of FGN, that is,
Sw, (@ = o, 0Oxoe R,

then we can rewrite Problem (3.5.1) in the following equivalent form:

Hy: W has spectral density Sw,
versus (3.5.19)

H;: W has spectral density S;.

With regard to this formulation, we have the following result.

Proposition 3.5.5: If there exits § > 2H - % such that

lim lo!P[S() - Sw,(@)] =0,

1031 —dee
then (3.5.19) is nonsingular. If

lim inf 1012~% [S)() - Sw, ()] > 0,

{1 —soe

then (3.5.19) is singular.

The proof of Proposition 3.5.5 is essentially due to Rozanov. For W a stationary L2
process with integrable spectral densities, the result is proven in [56]. The extension to the

case considered here follows easily from Lemmas 8 and 12 in [57].
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For a wide class of covariance functions Ky, this result gives simple nonsingularity con-

ditions for Problem (3.5.1). For example, if, under H,,
X (@) =By 1@) + By 1), t € [0,T],

where By 8 {By-r(t); t € [0,T]} is another FBM independent of By 7, then Problem
(3.5.1) is nonsingular if and only if H”* > H + Y. Heuristically, Proposition 3.5.5 implies that
a Gaussian signal produces a nonsingular shift in additive FGN when the signal’s spectrum

has o (If 1%y qails,

3.6. Performance Characteristics

In this section, we investigate some aspects of detector performance in the presence of
additive fractional Gaussian noise. In particular, we derive the signal-to-noise ratios of the
optimal detectors for a class of baseband signals. We also derive channel-mismatch degrada-

tion factors for two members of this class.

Consider the following normalized version of Problem (3.4.1):

c
: dY (t) = ———dB R 0.T],
Hy @) N HiT() t e [0,T]
versus 3.6.1)
c
Hy: dY(t) =s@)dt + —=dBy ,1(¢), t € {0.T],
1 “/VH- HI\T

where the normalizing factor 6/4/Vy reflects the assumption that the noise has "power" &2
(i.e., Var(Y (1)} = 0?). It follows from Corollary 3.4.3 that Problem (3.6.1) will be nonsingu-

lar if and only if, for almost all ¢ € [0,T],




o |
. !
H-% H-% VoH =
s(t) = ————t ¢ty “h¥H 5 (1)dx, (3.6.2)

O = {‘ ) (vd I
where § € L%([0,T)), and, for almost all ¢ € [0,T], '

Vg d |

3 H-% Yol WYi-H
1) = =t " ||t T T tdt . 3.6.3
$¢) ol'C~H) de g( ) s (%) : ( ) l
Assuming nonsingularity, the log-likelihood ratio for (3.6.1) is then given by (cf. (3.4.6)) '
log L(Y) =Y, m)gy) =~ Y2 m, m)g vy (3.6.4) '
where l
t
m(t) 8 fs(vdr, (3.6.5) '
0

T
m, may, = [[5(0)dT, (3.6.6) '

0
and .

VH T t
Y, mg oy = =[5 ()t %4, [(r =) P4 H dY (v). 6.7 .
Y. miacn = S gy [§OF e T ar @ (3.6.7)

It follows from (2.1.2) and (2.1.3) that log L(Y) is distributed in the following manner .
under the two hypotheses: '
Hy log L(Y)-N [—‘/& m, mg ey m, ’”)ll(Y)]’ '
Hl: log L(Y) ~N [ 14 (m, m>n(Y), (m, m>"(y)]. '
Assuming equal prior probabilities on H, and H,, the minimum-probability-of-error detection l
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rule takes the form (see [54])

1 iflog L(Y)20
sV =1 :
if log L(Y) <0

and the minimum probability of error is P, = &(~Ya\{m, m gy, ), where ® is the standard
normal distribution function. Note that P, is a decreasing function of {m, m},,(y), which

represents the signal-to-noise ratio (SNR) of the optimal detector for Problem (3.6.1).

Now, suppose that the signal s is of the form

—
s@) = §—}%ilta, t e [0T], (3.6.8)

where C is any real constant and a 2 0. All of these signals have average power C 2 and

satisfy (3.6.2) with § given by

,
C\Vy Ra+D) Hond

)= oT*IrCr-H) dr

t
Je-nH A s(myde
)

C\Vy Qotl) - d :

(¢ ~n) A H ot H g
oT°T'(-H) dt o

1

CVyQo+D) . vod | geooon Yl otY~H
_— H%Z |, fa—n*He dt
oTT Ch-H ) dr 0

C (0+2-2H WV 20+ 1) w,_H‘ Vb s
¢ fa-m*H orAH g
oToT'(C~H) 3

C (0+2-2H WV, (20+1) jav-t TCo—H)T(o¥-H )
oT°T'(e~H) I(o+3-2H)

C F(a+3/2—H WVy (2a+1) [oraH
oT T (a+2-2H ) '
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Hence, the SNR of the optimal detector is
T
m,m\g ) = {[g QI L
(3.6.9)

2
T2

_ C*Wy Qo) | rias-H)
o22a+2-2H) | T(o+2-2H)

For H = ' expression (3.6.9) reduces to

m, mgcy = 5T,

a2

as one would expect, since H = '4 corresponds to white noise. In this case, the optimal SNR
grows linearly with respect to the length of the observation interval. However, for any H in
the range Y2 < H < 1, {m, m)gy) grows sublinearly with respect to T. In fact, for H = 1,
the performance of the optimal detector is virtually independent of the length of the observa-
tion interval. This is in spite of the fact that the signal energy grows linearly with T and is in
marked contrast to the asymptotically linear growth that one would expect if the noise process

had a rational spectrum.

It is interesting to note that a constant signal (a = 0) is essentially the only periodic sig-
nal that displays this behavior. More precisely, if s is a continuously differentiable periodic
signal, the optimal SNR will grow asymptotically at a linear rate for all H in the range
Y2 < H < 1. The proof of this fact is straightforward, although somewhat messy, and is omit-
ted.

For fixed T, the behavior of the optimal SNR, as a function of o and H, is pretty much
as one would expect, that is, increasing in both o and H. In fact, (3.6.9) implies that, for

fixed T,
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l}iin;l(m,m),,mr-oo, Y a>0,
and
:i_t'r.x. m,mig oy = ¥ H >

The behavior when & = 0 is interesting.” In this case, expression (3.6.9) reduces to

CTChH)  room

(”’ ’ ”’)nm =
ORH T(H +%)(3-2H)

and, as H — 1, we get

‘m, m\ -)Ei
\NTEs T (YY) .

a2

An optimal SNR equal to C%/0? corresponds to the case in which the sample paths of the
noise process are constant with probability one. In fact, if we were to extend the definition of
FGN (with power ¢2) to include the limiting case, H = 1, we would want just such a process

since

. o* . 2H-2
Jim -;;Kw”(:) = lim o°H QH-1)Iz (¥ = o, ¥te R

Hence, heuristically, FGN can be regarded as going from a completely unpredictable process

at H = ' to a completely predictable process at H = 1.

Now suppose that s is of the form (3.6.8) but that H is incorrectly identified; that is,
suppose that log L(Y) is computed using (3.6.3) - (3.6.7) on the basis of H* # H. Then

log L(Y) (which, in this case, is not the true log-likelihood ratio) is distributed as follows:
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Hy, log L(Y) ~ N(=%, V3,
H,. log L(Y) ~ N( %, v?),

where (using (3.6.9))

VHI T H, A y ' 1 ’
= By {————— g [(t—r)FH A dy (x
k=B i gs(:)r , g(: ) (T)

T 4
H' =y H'-% VeH' o-H’
= e 1§ (I d, }(t-T) T s(tdz
cI‘(’/z—H')!; '!;

(3.6.10)

T
= j (5(0))2d<
0

_ CWyQot)) | T(as¥n-H") 212-211',
0%(2o+2-2H) | T(a+2-2H")

and




F

T t
= Vapd—V H_ (<N H'-% Yot ' YouH'
v2 = Var or(%-H')g’(')' d,{(z )4 H g5 gy (v)
CVyT(a+h-HW2or1 T ¢
= VarJ

oVVy T (a+2-2H YTC-H ) 1
L
[

CVy T(o+3h-H W2o+1 T

= Var? T®[(t-n*H'e4H dByy 1 (1)

oV TOT (a+2-2H Y[ (Ch-H ") )

-

T t
- o [ A H ‘4 HqB,, 2 (v) |dt
o o

We consider two special cases.

Case 1: Constant Signal (x = 0)
If a = 0, expression (3.6.10) can be rewritten as

2 ’
) CWyBCr-H’, 2~H") e
o T(2-2H ")

where B represents the beta function, and (3.6.11) reduces to

cvy | ™
oT2H" |

frod, [e-nH e aBy (1)
0

V2= |———x | HQH-D[[(T )4 H (T ) H 0" H 11y 1 2d tdy
00
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(3.6.11)

2 A 11
CVu 242H —4H’ Vo-H ' Yo—H’ Yo-H’, Vo~H’ 2H -2
= }?‘Z2-_2H')" HQH-1)T?* g(l—'t) A H (1—p)Hy it=v ¥ 2dtdv
" 72
CVy- ,
= | | H@H-1TBH - !
=Tl ( ) e(H H

where
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11 ,
e(H H") & [ H P40 (o)A W H 110 1 24y,
00

Hence, the probability of error if a =0 and H’ # H is

=0l-&
r=of £ ]

=0

(—CBO-H . %-H) 1
~20"/H(2H—1)e (H H |

Naturally, letting H’ = H gives us the minimum probability of error; that is,

P; = O(-%\Im, mgy))

=® - E(S/Z—H, 3/2—1'1) TI_H
20VH 2H -1)e (H H) '

It follows that

[ Y’ Yo
b, = o | _ZCBOsH" ¥t Tl-"].

| 20VHZH-De(H H)
_ ¢r ~CBChH, Y-H) r1-n[eHH) BCaH’ *-H")
|20VH @H-1)e (H H) e(H.H) BCa-H, h-H)

| \[ e H) |BCnH" rH" |
=@ |-%\/'m, m\ T '
2\J v, m g () e(H H [ B(~H, 3~H)

-

Hence, the degradation factor d(H ,H’), which represents the loss in SNR due to channel

mismatch, is given by

2

&H.H") = .

e(H H) |BCr-H’, ¥~H")
e(H.H") | BCha-H, %~H)

The above derivation was carried out assuming that both H and H’ were contained in

the interval ('4,1). However, it is straightforward to show that all of the above holds if
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H’ =% and %4 < H < 1; that is, if a nonwhite channel is assumed to be white. If the actual
channel is white, however, the expression for v2 takes a different form. It is easy to see that,

ifH ='%and < H’<1, we get

- 12 1
2 C I H’ 34H’ 1-2H' 1-2H"’
= |l—_————o T 1 d
V= |ore=2m) | Ja "
[ 12
CVH' 34H’
= | — 2-2H’, 2-2H").
| o'(2-2H) | T A )

In this case, the degradation factor is given by

~n o [ B(3/2_H ’v 3/2—H') ]2
3CAH" = BR-2H’,2-2H")

We have evaluated these degradation factors numerically for various values of H _ and
H’. The results are presented in Table 3.6.1. As this table shows, if the channel is actually
white (H = %), the detector performance is very sensitive to mismatch. In fact, as H* — 1,
we have 8(2,H’) = 0. On the other hand, Table 3.6.1 shows that, if the actual channel is
nonwhite (H > %), the detector performance is fairly insensitive to mismatch. In fact, if
H =1, there is virtually no loss in performance regardless of what value of H’ is used to

design the detector.

Clearly then, in the constant signal case, there is little to be gained, and potentially much
to be lost, by using a detector designed to match an assumed value of H > 4. The robust
strategy is to use a simple integrate-and-dump detector. This behavior is apparently related to
the fact that, when using constant signals on a channel for which H > '3, both the signal and

noise power are concentrated at the origin in the frequency domain. As we show below,
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Table 3.6.1. Degradation 8(H ,H ") Due to Mismatch (Constant Signal)

H 0.500 0.600 0.700 { 0.800 | 0.900 | 0.950 0.975 0.999

0.500 || 1.0000 | 0.9910 | 0.9528 | 0.8534 | 0.6140 | 0.3823 | 0.2160 | 0.0098
0.600 |{ 0.9950 | 1.0000 | 0.9962 | 0.9622 | 0.8716 | 0.7850 | 0.7247 | 0.6533
0.700 || 0.9864 | 0.9960 | 1.0000 | 0.9934 | 0.9645 | 0.9341 | 09124 | 0.8862
0.800 |} 0.9815 | 0.9902 | 0.9970 | 1.0000 | 0.9950 | 0.9870 | 0.9809 | 0.9734
0.900 || 0.9847 | 0.9898 | 0.9946 | 0.9984 | 1.0000 | 0.9994 | 0.9986 | 0.9972
0.950 |} 0.9906 | 0.9932 | 0.9960 | 0.9982 | 0.9998 | 1.0000 | 1.0000 | 0.9996
0975 || 09948 | 0.9962 | 0.9976 | 0.9988 | 0.9998 | 1.0000 | 1.0000 | 1.0000
0.999 | 0.9998 | 0.9998 | 0.9998 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000

when using nonconstant signals, there is much more to be gained by properly identifying the

self-similarity parameter H .

Case 2: Ramp Signal (@ = 1)

For a = 1, (3.6.10) and (3.6.11) become

2 2
W= 3C VH' [I‘(slz—H') J T2_2H"

o%(4-2H") |T(3-2H")

and
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v2

ﬁcv 'r SIZ_H 2 .
= i TCHD) | o _yyresas
oTT(3-2HNICh-H")
;
11
- [t A (o A H G gy 22
00

-

. 2000 | a-va-v ] J wu}

Y-H' ~ (p-H")?

b

_ [ V3CVyy T (Sa—H")

2
- 24+2H—4H’ ’
STG-2H Y Ca-H) ] H@H-DT ¢ HHD,

where

11
e(H H") 8 [[(-n*H A (1) AH A H 11y 242
00

) _2(-v) (1-1)(1-v)
[1 T + Ty ]qu.

Proceeding as before, we find that, for o <H <land K<H' <],
SH HY = [(r—H YT (3~H YT(3-2H }(4-2H ) _, , e(H ,H)
ICr-H)YTCh-H)T(3-2H")4-2H") ¥ eH H")'
Further, for H = 4 and 4 < H’ < 1, it is straightforward to show that

_ TOR-HOT(Ch-H") 3
SO = Faamaany N Coa

where

1
(Gr-H"?

e (BH") A BR-2H", 2-2H") - ?/;2[-1—,13(3—211 ' 22H") + B(4-2H", 2-2H").
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Again, we have evaluated these degradation factors for several values of # and H’. The
results are presented in Table 3.6.2. As this table shows, detector performance continues to
be quite sensitive to channel mismatch when H = '%4. However, with this signal structure,
detector performance is also quite sensitive to mismatch when A > 4. This would seem to
indicate that, for general nonconstant signals, 'signiﬁcant performance improvements can be

expected due to proper identification of the parameter H.

Table 3.6.2. Degradation 8(H ,H") Due to Mismatch (Ramp Signal)

H™ )l 0500 | 0600 | 0700 | 0.800 | 0900 | 0950 | 0.975 | 0.999

0.500 |} 1.0000 | 0.9712 | 0.8505 | 0.5964 | 0.2615 | 0.1129 | 0.0514 | 0.0019
0.600 || 0.9783 | 1.0000 | 0.9600 | 0.7896 ( 0.4791 [ 0.3109 [ 0.2357 | 0.1722
0.700 |{ 0.9084 | 0.9675 | 1.0000 | 0.9330 | 0.6745 | 0.4908 | 0.3996 | 0.3179
0.800 | 0.7691 | 0.8488 | 0.9415 | 1.0000 | 0.8701 | 0.6912 | 0.5845 | 0.4808
0.900 || 0.5081 | 0.5796 | 0.6901 | 0.8588 | 1.0000 | 0.9216 | 0.8188 | 0.6912
0.950 || 0.2980 | 0.3453 | 0.4272 | 0.5864 | 0.8906 | 1.0000 | 0.9561 | 0.8308
0.975 |} 0.1623 | 0.1896 | 0.2392 | 0.3476 | 0.6498 | 0.9281 | 1.0000 | 0.9136
0.999 || 0.0071 | 0.0083 { 0.0107 | 0.0165 | 0.0419 [ 0.1214 | 0.3341 | 1.0000
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3.7. Conclusion

In this chapter, we have considered the problem of detecting signals in the presence of
additive fractional Gaussian noise. We have applied results from the theory of reproducing
kernel Hilbert spaces to give necessary and sufficient conditions for the problem to be non-
singular and to develop whitening filters. For the case of a stationary stochastic signal, we
have interpreted these results in the frequency domain. In the case when the signal is deter-
ministic, we have characterized the optimal detector in terms of the likelihood ratio. Finally,

we have studied some aspects of detector performance on FGN channels.

An interesting problem that we have not addressed in this context is that of sequence
detection in FGN. It is obvious that, in the presence of such strongly dependent noise, the
use of any one-shot strategy (optﬁnal or not) to detect a sequence of signals will lead to a
sequence of strongly dependent detection errors. The study of this phenomenon and its conse-

quences is an interesting topic for further investigation.
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CHAPTER 4

AN RKHS APPROACH TO ROBUST DETECTION AND ESTIMATION

4.1, Introduction

In this chapter, we consider the problems of L2 estimation and signal detection in the
presence of uncertainty regarding the statistical structure of the random processes involved.
The classical approach to designing estimation and detection procedures relies upon exact
knowledge of this statistical structure, and procedures designed to be optimal for a particular
nominal structure sometimes perform very poorly if the actual statistical structure varies even
slightly from the nominal. The minimax approach to designing robust procedures that display
some amount of tolerance to variations in the actual statistical structure of the problem has
been studied in recent years by many authors. The work presented here is most closely
related to and motivated by the results presented in [52], [53], [66], and [70]. Other related

results can be found, for example, in [9], [10], [24], [39}], [40], [65], [68], and [69).

We formulate and analyze the robust estimation and detection problems in the context of
reproducing kemel Hilbert space theory. Although the relationship between classical
detection/estimation and RKHS theory is well-known (see, for example, [22], [23], and [48])),
this theory has not been applied previously to the study of robust estimation and detection.
By using an RKHS approach, we are able to generalize the notion of a linear filter and to give
necessary and sufficient conditions for such a filter to be robust in the minimax sense for the
general L2-estimation problem in which there is uncertainty in both the covariance structure of

the observed process X 2 (X (¢)) and the cross-covariance structure of X and Z, the variable
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to be estimated. We show that, under mild regularity conditions, the robust filter can be
found by solving a related minimization problem. We also give conditions sufficient to insure
that the robust filter exists. In particular, we show that, if the covariance structure of the
observed process is assumed to be known, so that the only uncertainty is in the cross-
covariance structure of X and Z, then a robust filter will always exist and can be found by

solving a straightforward minimization problem.

A somewhat surprising consequence of this analysis is the striking similarity between
these results for the general robust L2-estimation problem and results given by Poor in [53]
relating to robust matched filtering. Reformulating the robust matched filtering problem in an
RKHS context allows us to extend Poor’s results and clearly reveals the underlying similarity
between the robust estimation and matched filtering problems. In fact, the structures of

minimax solutions to the two problems are seen to be virtually identical.

As a final application of the RKHS approach to robustness, we consider the problem of
robust quadratic detection of a Gaussian signal in the presence of Gaussian noise, in which
the deflection ratio is used as a performance criterion. We show that this problem also can be
formulated in an RKHS context, and, when the structure of the noise covariance is assumed to
be known, is exactly analogous to the robust matched filtering problem. If the covariance
structure of the noise is also unknown, the robust quadratic detection problem can be embed-
ded in a larger problem, which is again analogous to the robust matched filtering problem. A
robust filter for this larger problem will then possess desirable robustness properties when

applied to the quadratic detection problem.

This chapter is organized as follows. In Section 4.2, we present some definitions and

notation that will be used throughout the chapter. In Section 4.3, we discuss the general

M
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robust L2-estimation problem, and in Section 4.4 the robust matched filtering problem.
Robust quadratic detection is discussed in Section 4.5. Section 4.6 presents some concluding

remarks.

4.2. Preliminaries

Throughout this chapter, X 4 {X(¢); t € I} will represent an observed process defined
on an arbitrary index set /. All random variables will be assumed real-valued with mean zero
and finite variance unless otherwise specified. The extension of all results to the case of
complex-valued random variables is straightforward.

Suppose that K is a class of covariance functions defined on an index set /. We define

H (KK) as the set of all functions belonging to H (K') for some K € K; that is,

HEK)= v HE).

Note that H (K') is generally not an RKHS, nor is it necessarily closed under addition. How-
ever, if K is a convex set of covariance functions, then H (K) is convex. This foilows from
the fact that if sg € H(Ky) and 5, € H (K ), then (1-0)sq + a5y € H((1-0)K + oK) (see
(1], §L6).

We define a finite filter on K as a pair h = ({k; )%, (t;)L)), where n is a positive
integer, (i) c R, and (f;})4; 1. For each K € K, the function hK € H(K) is

defined by

hK() A ThK (L),

i=l1

Similarly, we define a filter on K as a sequence h = {hy }5-; of finite filters such that, for
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every K € K, the sequence [ENK }N=1 € H(K) converges in H(K). For each K € K, the

function hK € H (K) is then defined as
- . niN)
hK ()4 lim hyK ()= lim Y A4 MN)K (5 O)),
N—"‘ N—)c- i=l .

where the limit is taken in H (K') (and consequently pointwise, as well). In order to simplify

notation somewhat, we will regard Nul{t‘- (NI as a single sequence (f;};2; and write

hK() = lim T h MK Ch),

i=1

where it is understood that, for each N, the sequence {k;(N)};Z; has only finitely many

nonzero elements corresponding to the appropriate values of the sequence (¢;};2;.

For any class K of covariance functions on /, we denote by /F (K') the class of all filters
on K, and we note that the class of finite filters can be regarded as a subset of F (K). To
denote the set of filters defined on the singleton class K = (K}, we simply write F (K); thus,

F(K)= N F(K). Forany he F(K), we can define a function L. h: H(K) > R in the
€

following manner. Let K € K and s € H(K). Then

/ \NA/ \
\S, h,é\s, hK/"(K)
'—'(S, lim ENK>H(K)
N =300

= lim 5, WK mx)
= lim 's, S h (VK (£
N—)co\ §1 1( ) ( ;)/H(K)

= lim 3 AM)sE).

= =)

It is clear that (-, h} is well-defined on H (K) for any h € F (K). Further, for any h € F (K)

e ————————————————————————————————————



70

and K € K, the restriction of (-, h) to H (K) defines a bounded linear functional on H (K).

Also, for any K € K, we have
\ \
(hK, h) = hK, hK g x,
= lim (hyK, hyK)
Noee | N N B (K)

= lim 3 hORENK ).

N —ree i,j‘-‘-l

If the process X has covariance function Kx € K, then, for each h € F (K), we can

define h(X) € L%X) as

h(X) 4 lim hy(X)
4.2.1)

8 Jim Fh X @),
=% =l
where the limit is taken in the mean-square sense. The fact that this limit is well-defined fol-
lows from the congruence between H (K'x) and L*(X); that is,
lim E((hy(X) - hy(X)1?} = lim |hyKx - hyKxllZ
yim {[hy X) = hy (X)]°) ylim Iy K'x = My K xlliz k)

=0.

Note that (4.2.1) implies that h(X) = X, hK x (k).

Finally, the term signal will usually refer to a funcdon s: / — R, and uncerrainty class
will always mean a set of signal-covariance pairs (s,K). The term admissible uncertainty
class refers to an uncertainty class & with the following additional properties:

(i) for all pairs (s,K), s € H(K), and

(ii) U is convex; that is, if (se.Kg)€e U and (5:,K;) e U, then

((l‘a)So"’ml, (l—a)Ko'f'aKl) e U forall0<sasl.
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Given any uncertainty class U/, we associate with it the class K (U) of covariance functions

"contained in" U ; that is,

KW)4 {K: (s.K) € U for some signal s}.

We are now ready to discuss the problem of robust L? estimation.

4.3. Robust L2 Estimation

Let X 4 {X(¢); t € 1) be an observed zero-mean process with covariance function Ky,
and let Z be an arbitrary zero-mean, L? random variable. If Z(X) is the projection of Z onto

L*(X), then we know that
E(Z - Z(X)P%) = ,in E((Z - Ul 4.3.1)

That is, Z(X) e L%(X) is the linear estimate of Z that minimizes the mean squared error
(MSE). Of course, Z (X) is also the unique element of L%(X) that satisfies the equation

E(X(6)Z} = EX ()2 (X))}, ¥rel 4.3.2)
We can restate these relationships in RKHS terms by defining sz: / = R as

sz () AE(X(1)Z}, Yrel

It then follows from Equations (2.1.1) and (4.3.2) that s; € H(Ky) and !X, sz,q k) = Z(X).
Hence, if Ky and s; are known, the linear estimate 2(X) e LX) satisfying (4.3.1) can be

determined as follows. Since s; € H(Kx), there exists a filter h € [F(Ky) satisfying

sz = hKy; that is, forall t € [/,
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sz(t) = hKx(t)

= lim hyK (¢
pm By Kx(@) (4.3.3)

= A}im ih.' WNIK x(2.5;)-

i=1
It follows that Z(X) = X, sz>,, (Ky) 1S given by

ZX) = kX)

= im ThANXE).
Nowe 5

Of course, Equation (4.3.3) is just a generalization of the well-known Wiener-Hopf equation.

The foregoing discussion is a restatement of classical L?%-estimation results in RKHS
terms, but now consider the problem in which there is uncertainty in the structure of Ky or
sz. In particular, suppose we know only that the pair (sz,Kx) belongs to some admissible
uncertainty class ¥/. Recall that, for any pair (s ,K') € U, we require that s € H (K). Since
we have already seen that, in general, we must have s; € H(Ky), this restriction on the
structure of ¥ is quite natural for this problem. Now, since Kx and sz are no longer
assumed to be known precisely, we cannot expect to find the estimate Z(X) e L¥X) that

solves (4.3.1). Instead, we look for a filter hgy € FF (K (I)) that satisfies

sup Mhyg; (s = inf S Mh; (s ,
(Sx);e)” (hg; (s.K)) . . (s;)g” (h; (s.XK)) (4.3.4)

where M (h; (s,K)) is the MSE associated with estimating Z by h(X) if Ky =K and 5s; =5

that is,
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M; (s.K)) & E(IZ - h(X)]?)
3 X (5)1%)

i=1

=E{[Z - li
@ - o

r

=E(2?) -2 ihi(N)E{X(t‘-)Z}] + lim 3 (N (NE(X ()X (1))

lim
Vo= =1 ij=1
:

= E{Z2] -2 A}im ihi(N)s(t,-)] +Nlim i h,-(N)hj(N)K(tj,ti)
= =) = j=1

~

=6} -2/s, )+ (hK, h).

Notice that we are implicitly assuming that 0'22 4 E{Z?} does not depend on the actual struc-
ture of K'x or sz - it is assumed fixed but not necessarily known. This is usually a reasonable
requirement on the structure of the uncertainty in the problem (see [52] and [66] for some
examples), and, in any case, it is equivalent to solving a "normalized” problem in which the
performance criterion is MSE/ozz, and U consists of pairs (s ,K) corresponding to the possibie
values of (sz/0%, K x/c3).

A filter hy € F(K(U)) satisfying (4.3.4) is called a robust filter for the game

(F(KWWU)),UM). In order to find a robust filter, we search for a saddle point for

(F (K(U)),U M), which is defined to be a pair (hg; (s,K)) € F (K (U)) x U that satisfies

M (hg; (s K)) < M (hg; (s.KD) S M(h; (s.KD) ¥ he FKW)), (s.K)e U.
4.3.5)

If (hg; (s ,K)) satisfies (4.3.5), then it is easy to see that (see [4], §2.3.1)

inf sup M(; s, K))= su inf M (h; (s = M (hg: Ko).
verin@y o g T KD = O rerRay M KD =M (LKD)

In particular, hg satisfies (4.3.4). If we define
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M*'sK)2 inf M; (s.K)),
he F(K(T))

then (4.3.5) clearly implies that
M* (LKD) =Mg; (LKD) 2M (s K), ¥(sK)e U,
that is, (s K ) is least favorable for (IF (K (U)),U ,M). We consider some of the properties
of M and M".
Lemma 4.3.1: M is concave on U for fixed h € F (K (U)).

Proof: Let (s5; ,K;) e U fori =0, 1 and (54K o) = ((1-)so + a5, (1-0)K g + 0K ) for

0 £ a < 1. Then, for fixed h € F(K(U)),

M(h; (56K o) = 0F =254, b+ (hKg, by

=02-2 [Iim ih,-(N)sa(t,-)] + lim f; hi (N YR (N K o5 1)
N == =) N j=1

. . 1
=(1-o) [67 -2 | lim A WM)so(t) |+ lim 3 AN IR; (N IK o2 .8)
, V== isl ) Nomij= .
o W o0 1
+a r0'22 -2 h}im > h(N)s () +Nlim )3 h‘-(N)hj(N)K]([j,t‘-)
> =1 = ig=l ]

. . P

= (l—a) O'% -2 (So, ho>+(hK0, h)]

(2 ‘o B4/ \
+a|o7 -2¢,,h+ 0Ky, by

= (1-)M (h; (s¢.K ) + oM (h; (s.X ). B

Lemma 4.3.2: M" is concave on U.

Proof: Let (s ,,Ky) be as before. Then
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M (sako) = neri(!g(un Mh; (5o K o))

2 heﬂ-"i(rg(ll)) [(I—G)M (h; (s0:K ) + oM (h; (Sl,kl))]

2(1—(1)[ inf M(h;(so,Ko))]+a[ inf  M(h; (sl,Kl))]
he F(K(U)) he F(K(U))

= (1-)M " (50K ) + oM " (s ,K ). W

Lemma 4.3.3: For any (s¢.Ko) € U,
M" (s0.K o) = 63 = S0 SO Koy
Further, for any h € JF (K (U)), we have
M (; (so.K o) =M (50K 0)
if and only if hKy = 5.

Proof: Since sy e H(K(), there exists hy € F(Ky)) such that hoKy=s(. For any

he FUK(U)) c IF(Ky), we have

M (h; (50K o)) = 67 — 2 lsg, hy + (K, by
= 6% - 2/hoK g, h) + hK g, h)
= 07 - 2 (K, hK o () + 1K o) WK oo k)
= 6 +{(h-h)K g, (h=ho)K o) k) — oK 0> MoK oy (ko)

_ \ \
= 0 + {(h-h)K o, (h—h)K o ko) =\ Sl (o)
Hence,
M (k; (50.K ) 2 63 ~ IS0, So ko)

with equality if and only if hKy=hoK =5, Further, since hy € F(Ky), there exists a

sequence {fl,?, IN=1 < IF (K (U)) of finite filters such that
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lim h9Kg=hoKg = 5
N —ren

and it follows that

NH-I-E- M®BY; (se.Kp) =63 -2 Lvhg; Ison flﬁ)] + 1\}12- hNKo, by
. 0 .m0 1O
=0} -2 L}gﬂ_ So» hyK o)n(xo)] + Jim hyKo. WK om k)
\
=07 -2 {50, Som &y * S0 Som Ko
2

— ! \
=07 =50 Som (Ko

This proves the lemma. B

We can now give necessary and sufficient conditions for a pair (hg; (s1,K)) to be a sad-
dle point for (F (K (U))U.M). These conditions are very reminiscent of those given by
Poor in [53], Lemma 1, relating to saddle point solutions for the robust matched filtering
problem. The similarities between these two problems will be explored more fully in the next
section.

Theorem 4.3.4: (hg; (s K )) e FIKWU) xU is a saddle point for (F (K (U)),U M)

if and only if hgK{ =5, and
2!s, hg) = Is1, hg) — gk, hg; 2 0, ¥(s.K)e U. (4.3.6)
Proof: Recall that (hg; (s K ) is a saddle point for (F (K (U N, U M) if and only if
M (hg; (s .KD) S M(h; (sL.KD), ¥ he FIKWU)), (4.3.7)
and
M (hg; (5 K)) < M (hg; (s..KD), ¥(sK)e U (4.3.8)

It follows immediately from Lemma 4.3.3 that (4.3.7) is satisfied if and only if hgK' = 5y, so
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the theorem will be proven if we can establish that, given hgK = 5[, (4.3.8) holds if and
only if (4.3.6) holds. To this end, notice that, since M is concave on U for fixed

h e IF (K (U)), (4.3.8) holds if and only if, for each (s K) e U,
tim L (b1 (g 0K o)) = Mbgs 5LKD)] 20,
where (54K o) = ((1-0)s + as, (1~a)K | + aK). Butif hgK = s, then
$L Sum®y = S bry = KL, by
and, by Lemma 4.3.3,
M (hg; (LKD) = 0F - $SL sumky-

Therefore,

,

) 1 . 1
(il_% - [M(hR; (5K o)) — M (hg; (sL,K,))] = il_x’no P :2(1 S hR> - 2(1-0) 5, hg)

thgK o, hg) + hpK |, hR>]

1
< 2 s, hg) — 2(1-a0) s, hg)
/ \ ! \
a\hRK, hR/ + (2-o0) \hRKL' th]
.1
= olg(l) = [—-Za s, hg) + sy, hg) + o gk, hR>]
=-2 (S, hR> + (S L hR> + (hRK, hR>
Hence, if hgK| = s, then (4.3.8) holds if and only if (4.3.6) holds, and the theorem fol-
lows. ®
Theorem 4.3.4 gives a complete characterization of saddle point solutions for
(F(KU)),UM). The next theorem and its corollary give conditions under which the

existence of a saddle point is equivalent to the existence of a least favorable pair (s ,K)
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maximizing M* on U. Since M" is concave on U, the search for a least favorable pair
often reduces to a straightforward convex programming problem. The proof of Theorem 4.3.5
is given in Appendix B.
Theorem 4.3.5: Let (s ,K|) € U and let hg € F (K ) satisfy hgK| = 5. Suppose that
K dominates K (U ); that is, for all X € K (), there exists C > 0 (depending on K') such
that K < CK (i.e., (CKL — K) is nonnegative definite on /). Then hg € FF (K (U)) and the
condition
SLsum®ky S Sy ¥YsK)e U, (4.3.9)

holds if and only if (4.3.6) holds; that is, if and only if
2s, hg) = &5, hgy — (K, hg) 2 0, ¥(s.K)eU.

Corollary 4.3.6: Suppose that (s K1) is a least favorable pair for (FF (K (U)),U ,M) and
that K; dominates K (U). Let hg € IF(K) be such that hgK| =s|. Then (hg; (s ,K)) is
a saddle point for (F (K (U)),U M).

Proof: If (s K ) is a least favorable pair, then

SL Sum®K) S 5@y Y6K)e
Since K| dominates K (), it follows from Theorem 4.3.5 that hg € F (K (U)) and
21ls, hy) - isL, hg) — {rK, hg} 2 0, Y(s.K)e U
The result follows by applying Theorem 4.3.4. W

Remark 4.3.7: Suppose that the index set / is itself a Hilbert space H, Then the

covariance functions K € K (U) all correspond to bounded linear operators on H, and a
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sufficient condition for K| to dominate K (U) is that the operator K; be invertible. To see
this, let K € K (U) with corresponding operator K and f € Hy. Then
’f. (CKy - K)f g, = . KIHCI ~ K[*KKLHK S g,
={KLf, C1- K *KKLHK(f g,
= CIIKLS W, - KL (KL*KKCHKLS
2 IKf I, [ € - KKK 1.
Clearly, if C is chosen to satisfy C 2 [KC#KK{*l, then the operator (CKy - K) is positive
and K « CK|.
It follows that, if (s ,K) is a least favorable pair for (F (K (U )),U ,M) and the operator
K_ is invertible, the pair (K[ 's; (s ,K)) is a saddle point for (F (K (U)),U ,M). Note that,
in this case, the filter hy consists of a single element hg = K{''s; € H,. The corresponding

random variable is hg(X) = X(hg).

In the case when the covariance structure of the process X is assumed to be known, so
that the only uncertainty is in the structure of the "signal” s;, the existence of a robust filter is

guaranteed, as the following corollary shows.

Corollary 4.3.8: Suppose U has the form
U=({sKp:5seS cHKy,S convex}

for some fixed covariance function K Then there exists a robust filter hg for the game
(F (Kg),U M). Further, hy satisfies hgK g = s, where s is the unique element of S (the

closure of § in M (K)) with minimum norm; that is,
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SLSumE) SS S mEy ¥s e S. (4.3.10)

Proof: Let T = {(s.Ko): s € §). Since § is a closed, convex subset of H (Kg), there
exists a unique element s, € § satisfying (4.3.10) (see [31], §3.12). Since s € H(K,), we
can find hg satisfying hgK ¢ = s, and, by Corollary 4.3.6, (hg; (51,K()) is a saddle point “or
(F (Ko),T M). Since M* (s Ko) =62 ~!s, s\g(x, is a continuous function on §, it follows

that

sup M'(s.Kg)= sup M'(s.Kp).
(sx&u (s.Ko) (sxo)r;n, (s.Ko)

Hence, following [70], §$II.D, we have

M (hg; (sL.Kg) = sup M (hg; (s.Kyp))
(s.Ko)elT
2 (3}1:& o M (hg; (s K)

> inf su& M(h; (s.Ko)
he F(Ko) (s.Ko)eU

2 su inf M(h; (s,Kg)
(s.Ko)e U heF (Ko)
= sup M'(s K
(S.Kog U 0)
= sup M"(s.Ky)
(s.Ko)eT
. = sup inf M(h; (s.K(p)

(s.Ko)e U he F(Ky)
= M (hg; (s ..K o).

It follows that all of the inequalities above can be replaced with equalities, and we get

M (hg; (5,Kg) = inf M (h; ,
(;,JS(‘iFeu (hg; (5.Ky)) he}l-{‘(Ko)(s,?(l:gU (h; (s .Ky))

so that hg is a robust filter for (F (K),U .M). &
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If the covariance structure of X is not precisely known, considerably more structure is
needed to guarantee the existence of a robust filter. The following coroliary gives one set of

conditions sufficient to guarantee the existence of a saddle point for (F (K (U )),U ,M).

Corollary 4.3.9: Suppose that / is a Hilbert space H , and let us regard K (&) as a set
of bounded, linear, self-adjoint, positive operators on M, Suppose further that
K (U) c HS(H ), the Hilbert space of Hilbert-Schmidt operators on H with the Hilbert-

Schmidt norm [lyscm,)- We can then regard U as a subset of Hy x HS(H o), which becomes
a Hilbert space under the norm

HCI = Iz, + ID*lsar)
If

(i) for every Ky,K, € K(U) there exist constants 0 < ¢ < C < = (depending on K,
and K;) such that cKj; « K, « CK; (i.e, the operators (CK;~ K;) and

(K, = cKj) are both positive), and
(ii) U is a closed, bounded subset of Hy x HS(H ),
then there exists a saddle point for (F (K (U )),U M).

Proof: For the case under consideration (I = Hy), it is easy to see that a finite filter h

corresponds to a function 2 € H, and, for any (s K) € U,

le BN= o\
b =5 my

e AN L\
\hK’ h/ = (h’ Kh/lo'

and
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M(ﬁ; (S,K)) = 0% - 2<ii’ s>no+<i;' Kil)"o‘

Clearly, for fixed h, the function M (h; (-, %)) can be extended to a continuous, concave
function on all of H, x HS(H ). By considering the proof of Lemma 4.3.3, it is easy to see

that, for all (s, K) e U,

M'K)Q inf MK
(s,K) nepl('}( @) (h; (s,K))

= inf M s ,K).
he F (X (T))

Hence, M”* also can be extended to all of H o X HS(H ) as the infimum of a class of continu-
ous, concave functions. It follows that M* (so extended) is concave (see the proof of Lemma
4.3.2) and upper semicontinuous (see [15], Proposition 7.11). By hypothesis (ii), U is a
closed, bounded, convex subset of the Hilbert space H x HS(H ), and it follows from {4],

Theorem 2.1.2, that there exists (s ,K) € U such that
M* (s ,Kp) = M* (s K);
UKD = 52 M0

that is, (s ,Kp) is 2 least favorable pair for (IF (K (U)),U .M). By hypothesis (i), K_ dom-
inates K(U), and it follows from Corollary 4.3.6 that (hg; (s ,K{)) is a saddle point for
(F(KU),UM) for any hg € IF (K (U)) satisfying hgK_  =5.. W

We end this section with an example illustrating the material discussed above.

Example 4.3.10: Let / = L2([a ,b1), the space of square-integrable, real-valued functions
on the interval [a,b], where —o < a < b <. Let k; be a known, real-valued, continuous

covariance function on [a,b] and let K, be the operator on L¥[a b)) generated by k; that is,
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b
(Kof )O) & [f (ko1 ¥ f e L¥(ab)).
a

Assume that K, is strictly positive. It follows (see, for example, [41], §6.10) that K, is a
compact operator on L%([a.b)), and, if we let {e, ) =; be the set of orthonormal eigenfunc-
tions of K, with associated (positive) eigenvalues A; 2 A, 2 ---, then {e,},7; spans
L¥[a.b)). ¥ we regard H (K;) as a subset of L*([a,b]), then it.follows (see [48), §9) that a

function s € L%([a,b]) is a member of H (K) if and only if
2 AW Sn
Islgky) 2 25— <= (4.3.11)
n=] A"l

where

b
5 = [s(De,(Dd.

Now, suppose that 022 >0, soe H(Kg), and € > 0 are given such that Iso. % Kg) < o2

and € < 3 (5,92, where
n=1

(=]
o

s, = |sg(De, (Tdr.

2

Define the set S < H (K,) by
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[
b
S 415 e H(Ko): lslig x, < 07, and [[s (%) = so(0)’dT <€
¢ @.3.12)
- 52 -
={s € L¥(ab]): 3o~ <o} and 3(s, ~sO?sey
n=1"n n=1

-\
We seek a saddle point for the game (F (Ko),U M), where U =S x {Kq}. We proceed by

searching for the least favorable signal; that is, the signal 5|, € S that satisfies

s lE xy = inf ls I ) (4.3.13)

2

n

. o ¢
It follows from (4.3.11) and (4.3.12) that solving (4.3.13) is equivalent to minimizing Z—X—
n=1""n

subject to the constraint ¥ (s, — 5,.0)? S €. A straightforward Lagrange multiplier calculation
n=1

yields the candidate s, € L%[a b)) defined by

- - | oA,s0
= 4 . 4.3.14)
SL ’Els,,e,,_ngl[cxu+l],. (4.3.14)
where ¢ > 0 is the unique positive solution to
0_ Ly _ —_n___ | -
’E(Sn ) ,El [Gkn +1 ] & (4.3.15)
Notice that (4.3.14) and (4.3.15) imply that
2 2
o (snL)2 o0 snL 0o sno
<A — 1| =A — | =A,0% <o, 4.3.1
Ex w 1n§l . IGZ’EI o T 0% < (4.3.16)

so that s € H (Kj).
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To show that sy is indeed the least favorable signal, we use the fact that s satisfies

(4.3.13) if and only if (see [31], §3.12, or apply Theorem 4.3.5)
s -sLspmEy 20 ¥sesS.
It follows from (4.3.11), (4.3.14), and (4.3.15) that
§ =L SLE®K) = = S SLUMES + 0 SL SLE(KY

0 0
= 1 Sp OA, Sy
=!s - 5g, SL) + ¥ —
N o SLEKy + X ok, +1 ||oA, +1

n=l’~n

-/ \
=3 —Sp SLI'(KQ)+ CE.

Further, it follows from (4.3.11), (4.3.12), (4.3.16), and the Schwarz inequality that, for all

s eSS,
- (s, — 59,k
\ _ n nhPn
I(S -So, SL/"(Kg)' = Z———X
n=] n
3 "
.oo lA oo sL 2
n
S |Z6a-s0?| | Z 5
_rl=l n=1 n
< CE.
Hence,
$=SLSLEKY 20, ¥seS,

and it follows that s is the least favorable signal.

Now, define hg € L*([a,b]) by
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oa S’lL
hr= T 5¢n- (4.3.17)
a=] *n

Then,

L
o s os
KOhR = Z_n—KOen = ZSuLen =S
n=l n=1
and it follows from Corollary 4.3.6 that (hg; (s, Kp)) is a saddle point for (F (Kop),U . M).

Note that, here again, the filter hy consists of a single element hg. The corresponding ran-

dom variable is

b
hg(X) = X(hg) = [hr(0X (Dd .

We now turn to the problem of robust matched filtering. As we shall see, the structure

of this problem is essentially the same as that of robust L? estimation.

4.4. Robust Matched Filtering
Let X2 (X(@),rel) be an observed process. Consider the following simple

hypothesis testing problem:

H,: X has mean zero and covariance function K'x

versus (4.4.1)

H,: X has mean function m and covariance function Ky,

where Ky is a known covariance function and 0 # m € H (Kx) is a known deterministic sig-
nal. This corresponds, of course, to the problem of detecting the signal m in the presence of

additive, zero-mean noise with covariance function Ky. The condition m € H(Ky)
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guarantees that Problem (4.4.1) is well-behaved and, when X is Gaussian, is related to the
nonsingularity of (4.4.1), as discussed in Chapter 2. We shall have more to say about this
condition at a later time.

Problem (4.4.1) is usually decided by using a linear detector; that is, a detector in which

the test sta_tistic h(X) is of the form
h(X) = lim Y A WNV)X (1),
Nows i1

where, for each N, the sequence (h;(N)};Z; € R has only finitely many nonzero elements,
and convergence is the mean-square sense under both hypotheses. Clearly, given any such
statistic, there is a corresponding filter h € F(Kx). Furthermore, since m € H (Ky), it is
easy to see that, given any h € IF (Kx), the comresponding statistic h(X) is well-dpﬁned under
both hypotheses.

The signal-to-noise ratio (SNR) for Problem (4.4.1) corresponding to the filter

h € FF (Ky) with associated test statistic h(X) is given by!

'Here and elsewhere, the quantity % is defined to be 0.

R



[E,{h(xn]2
Varg (X))

- 2
[Nlim 2hi(N)m (li)]

i=1

A(h; (m.Ky)) &

A}im ih,- (N (VK x(2.4;)
= =1

(4.4.2)
. )
{hKx, h)

2
AY
[(m’ "Kx/mxx)]
/ \ .
WK x, WK xm (k)

A matched filter for Problem (4.4.1) is any filter h e FK x) that satisfies
AM*; = A(h; .
(h'; (m Kx)) he;l’lg(x) (h; (m.Kx)) (4.4.3)

It follows immediately from (4.4.2) and the Schwarz inequality that h® satisfies (4.4.3) if and

only if h'K x = cm, for some constant ¢ # 0, and the maximum SNR for Problem (4.4.1) is

given by

Ah®; (m K yx)) = MmNl k.

Now, suppose that the pair (m ,Kx) is known only to belong to some admissible uncer-

tainty class ; that is, we now consider the composite hypothesis testing problem:
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H,: X has mean zero and covariance function X,
versus (4.4.4)

HI: X has mean function s and covariance function K,

where (s K)e U 2 In order to decide Problem (4.4.4), we are interested in using a linear
detector incorporating a test statistic hg(X) corresponding to a filter hg € F (K (U)) that

satisfies

inf A(hg; (s = su inf Ah; (s .
. (hg; (s.K)) sl Boy oy (h; (s K)) (4.4.5)

We will refer to a filter satisfying (4.4.5) as a robust matched filter for the game
(F (K (U)),U,A). In order to find a robust matched filter, we again search for a saddle point

(hg; (s LKD) € F(K(O)) x U satisfying

Alh; (s1.KD) < Alhg; (sL.K 1) S Alhg; (s.K)), Yhe FKW)), (s.K)e U.
(4.4.6)

If we define

A'(s.K)8 su Ah; (s.K)),
he F(K(U))

then, as before, (4.4.6) implies
A'(sLKD SA (s .K), V(sK)eU,

so that (sy ,K') is least favorable for (IF (K(U)),U ,A). We have the following properties for

Aand A®.

2We assume throughout this section that, for any pair (s K) € U, s = 0.




Lemma 4.4.1: A is convex on U for fixed h € F (K (U)).
Proof: Let (s;,K;) e U for i =0, 1, and define (54K, in the usual manner for
0Sasl If{hK;, hy=0fori =0ori =1, then it is easy to see that
Ah; (50K o)) = (1=)A(h; (50K ) + aA(h; (s1.K ).

If (hK;, h)> O for i =0 and i = 1, then, letting

_ a (hKl, h)
== .
ThK 4, b\

ar °Y

we have B € [0,1] and

\ So ) ) :
Ah; (5K o) = 1K, h, (1-B)7 +B7

Ko hy T K, h\

[ \Oh\ : \31 h) :
\ » 1 » 1y
WK By 0P [nge i ) +P (ko

I %

= (1-)A(h; (50.K)) + aA(h; (51.K1)).

This proves the lemma. N
Lemma 4.4.2: A® is convex on U .
Proof: See proof of Lemma 4.3.2.
Lemma 4.4.3: For any (5¢,Kg) € U,
A’ (5K o) =500 Som Koy
Further, for any h € F (K (U)), we have

Ah; (s.K ) = A" (5K )

if and only if hKy = cs for some ¢ = 0.
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Proof: By the Schwarz inequality, we have

2
[(S o hKom (x.,)]
Ko, hK o'm k)

A(h; (sg.K0) =

/ \
S0 Som oy

with equality if and only if hKy = csg, ¢ # 0. Further, since sg € H (Ky), there exists a

sequence (hJ )5, of finite filters such that
. T0p _
lim hyKy = s,
N —ree

and it follows that

le ROp N\ 2
tim A(Y; GpKo) = Hi o ko ky
IN: (S o)) = hm 0 =0
N e No= hyKo byKomx,)

—/ \
=50 Som (Ko

This proves the lemma. B

The following theorem gives necessary and sufficient conditions for a pair (hg; (s .K1))
to be a saddle point for (F (K (U)),U,A). It should be noted that, except for the addition of
a scale factor on the robust filter hg, these conditions are identical to those given in Theorem
4.3.4 for the robust L2-estimation problem.

Theorem 4.4.4: (hg; (s .K) € F(K(U)) x U is a saddle point for (F (K (U)).U ,A)

if and only if hgK = cs, for some ¢ # 0, and

2(s, h'g) ~{sp, gy - (WRK, W'y 20, ¥YsK)e U, 4.4.7)
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where g = —(l:-hR.

Proof: It follows from (4.4.6) that (hg; (s .K)) is a saddle point for (F (K (U )),U ,A) if

and only if
A(h; (s, KD) < A(hg; (sL.KD), Y he F(K(O)), (4.4.8)
and
A(hg; (sL.K1) < Alhg; (s X)), Y(s.K)e U (4.4.9)

Lemma 4.4.3 implies that (4.4.8) is satisfied if and only if hgK| = cs_ for ¢ # 0, so we need
to establish that, given hpK | = cs;, (4.4.9) holds if and only if (4.4.7) holds. Since A is con-

vex on U for fixed h € F (K (U)), (4.4.7) holds if and only if, for every (s K) e U,

lim (g 50K o)~ Alhgs (LK) 20
where (54.K o) is defined in the usual way. But if hgK = cs, then

1, 1

Alhg; LKD) =81 SumEy = — WU hg, = = thgKy, hg),

and
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2
/ \
1 [sw he, ] 1,

hm—-[Ah,s — A(hg; (s ] — sL hg)
(hg; (s0:K o)) = Alhg; (sL.KD) _’oam = YL MRy
2 2
. a? [(s, hk}] + 20(1-a) I, hg) sy, hg) + (1-x)? [(s,,, hR)] 1, .
=1 — - ,h
a0 @ "gK ,, hy) c CL R
2, 2, 1 1,
=—c- hR,"?\va hR/"I' h_rg;a—[\sb hR/-- hRKa’ th]

2, 2, ' 1 N \
—C- hR/ - "C" \SL, hR/+ 11:!}) -?a"‘ [ (hRKL’ l'IR/ - a\hRK, hR/

2 V1
= ( hR/“—c'(vahR/"—hRK hRI

_l \_/ A\ ’\
=2 \S, h’R/ - \SL, h,R/ ~\h'RK, h R/

Hence, if hpK'| = csy, (4.4.9) holds if and only if (4.4.7) holds, and the theorem follows. W

We also have the following corollary, which is analogous to Corollary 4.3.6.

Corollary 4.4.5: Suppose that (s .K}) is a least favorable pair for (F (K (I/)),U ,A) and
K dominates K (U). Let hg be a matched filter for (s ,K); that is, hgK| = cs for some

¢ # 0. Then (hg; (s .K)) is a saddle point for (F (K (U)),U ,A).
Proof: Let h'g = %hg so that h'gK| = 5|. By hypothesis, (s K ) is a least favorable
pair, so, forall s K)e U,
AT(SLKD =S Sumxy S Sae = 87 (5 K).

Since K| dominates K (¥), it follows from Theorem 4.3.5 that hg e FUK(U)) and
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2/s, gy =51, W'p) — {WRK, W'y 20, Y(sK)e U.
The resuit follows by applying Theorem 44.4. B

At this point, it is clear that the characteristics of a saddle point solution to the robust
matched filtering problem are virtually identical to those of a saddle point solution to the
robust L 2-estimation problem. Indeed, if we insist upon using normalized matched filters (i.e.,
hgK =s)), the characteristics are the same. This being the case, we can merely observe
that, with the exception of Corollary 4.3.9 (the proof of which depends explicitly upon the
structure of the function M), all of the remarks, corollaries, and examples following Corollary
4.3.6 have exact analogs relating to the robust matched filtering problem. In particular, if the
covariance structure of the observed process is assumed to be known, so that the only uncer-

tainty is in the structure of the signal m, the existence of a robust matched filter is guaranteed.

With reference to the case in which the covariance function Ky is assumed to be known,
it is interesting to note that the matched filter corresponding to any signal m € H (Kx) will
be a robust matched filter for any admissible uncertainty class ¥ in which the least favorable
signal is a multiple of m. This follows immediately from Corollary 4.4.5 and holds, in partic-

ular, for the class ¥ given by
/0 {(s Kx): s = mllg i, < s},

for any 0 <e < |m II,Z,(Kx). This is a generalization of a more familiar result regarding

matched filters for signals in white noise (see [25], §MI.A)3

3A similar result has been noted recently by Donoho and Liu in a different robustness framework [13].
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Remark 4.4.6: For the robust matched filtering problem, the requirement that s € H (K)
for all (s K) € U is not as natural as it is for the L2-estimation problem. Although such an
uncertainty class does usually admit a rich class of signal-covariance pairs, it is sometimes the
case that the "natural” uncertainty class contains pairs for w.hich s € H(K). For example, if
I is a Hilbert space H  and K, is a known covariance operator on H 3, a common uncertainty

class corresponding to signal uncertainty is of the form § x {K,}, where
s 4 {s € Hy |Is -soll},ose}

for some nominal signal sg and 0 < € < llsollflo (see [53]). If K is not an invertible operator,

such a set will contain signals that are not in H (K).

Consider the problem of finding robust matched filters for the case in which the uncer-
tainty class ¥ contains pairs (s,K) for which s ¢ H(K). Naturally, we must restrict our
attention to the set of filters FF(U) < IF (K(U)) that are well-defined for all signals "con-
tained in" . That is, h = {hy)5.; is a member of F(U) if, for every (s K)e U,

he F(), and

(s,h\A lim s, hN,A lim 3 h(N)s ()
i=l

is well-defined. If we seek saddle points for this problem, then, as the following lemma
shows, under mild regularity conditions, we can identify all possible saddle points by restrict-
ing attention to those pairs (s,K) € U for which s € H(K). The proof of Lemma 4.4.7 is a
straightforward application of the RKHS Approximation Lemma, which is given in

Appendix C.
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Lemma 4.4.7: Let [ be a separable metric space and & a convex set of pairs (s ,K') such
that K is a continuous covariance function on/ and s: / — R is continuous. Then

/ \
o)

Ach; (s 4 s < o0
hesI‘"lFU) (h; (s.K2) hell-'l?U) ‘K, b

if and only if s € H (K). Defining the associated admissible uncertainty class ¥’ by
u’é {(s,K) eU:se H(K)}

and assuming that U’ is nonempty, it follows that any least favorable pair (sy,Kp) for
(F(U),U.,A) must satisfy (s ,Kp) € U’. Hence, (hg; (s .K)) is a saddle point for

(F (U),U ,A) only if it is also a saddle point for (¥ (K (U )),U’A).

Note that the regularity conditions for Lemma 4.4.7 are not very restrictive. They are
satisfied, for example, if [ is a countable set (endowed with the trivial metric), or if / is a
separable Hilbert space H ;, and U corresponds to a collection of pairs (s ,K) with s € H|
and K a bounded covariance operator on H,. Also note that Lemma 4.4.7 does not say that
if (hg; (s.K) € F(W) x U’ is a saddle point for (F (K (U ")),U",A), then it is necessarily
a saddle point for (F (), ,A). However, in many problems of interest, this will in fact be

true, as the following lemma indicates. The proof of Lemma 4.4.8 is given in Appendix C.

Lemma 4.4.8 Let / be a Hilbert space Hj and let U =S x K, where § < H, is con-
vex with a nonempty interior and K is a convex class of covariance operators on H Let

U 8 (sK) e U:s € HK)). If there exists hg € Hgand (s, Kp) € U’ such that K is
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strictly positive and (hg; (s1,Kp)) is a saddle point for (FF (K (U ")),U’,A), then (h R LKD)
is a saddle point for (IF (T ),U ,A).

We close this section with a simple example.

Example 4.4.9: As in Example 4.3.10, let I = L%({a ,b1), ko be a continuous covariancc
function on [a,b] with associated strictly positive covariance operator Ko, and 545 € H (Kp).

Let U =S x (K,), where

b
S & 15 e L¥fa b)) [is(v) - st < e

b
forsome 0 <e< js& (t)dt. As discussed above, we define U’ as
a

U’ {(s,xo)e U:se H(Ko)},

and it is obvious that U’ = S’ x (K}, where

b
§'&4s € B(Kp): [ls(®) - sqml¥drser

Proceeding exactly as in Example 4.3.10, we find that (hg; (s1.Kp)) is a saddle point for

(F (Kg),U",A), where s and hy are defined by (4.3.14) and (4.3.17), respectively. It follows

from Lemma 4.4.8 that (hy; (s ,Ky)) is also a saddle point for (F (T ),U ,A).*

“This generalizes an example given in [53), in which it was shown that hg is a robust matched hiter for the
game (Lz([a,b]),ll A). In our terminology, this corresponds to restricting the class of allowable filters to in-
clude only finite filters.

—



98

4.5. Robust Quadratic Detection

Throughout this section, we assume that the observed process X B(X@ytel)is

Gaussian with mean zero. Consider the hypothesis testing problem:

H,: X has covariance function Ky
versus (4.5.1)

H,: X has covariance function Ky + K,

where Kg and Ky are known covariance functions on / and Kge H(Ky) @ H(Ky). This
corresponds to the problem of detecting a zero-mean Gaussian signal with covariance function
K in the presence of additive, independent, zero-mean Gaussian noise with covariance func-
tion Ky. Here again, the condition Ks € H(Ky) ® H(Ky) is a regularity condition and is
related to the nonsingularity of (4.5.1), as discussed in Chapter 2. In particular, this condition
guarantees that there exists a constant 0 < C < oo such that Kg « CKy; that is, Ky dominates
K (see (1], §L.11).

We assume that Problem (4.5.1) is to be decided using a quadratic detector; that is, a

detector in which the test statistic ®(X) is of the form

OX) = lim B0 & lim T 4 (XX () @4.5.2)
—3oe e iml

where, for each N, the infinite-dimensional real matrix (¢;;(V)) is symmetric and has only
finitely many nonzero elements. The limit is taken in the mean-square sense under both

hypotheses; that is,
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Jim E, ({®(X) - &y (X)) =0, n=0and 1. (4.5.3)

Note that this definition is very general and includes the more conventional examples of qua-
dratic,_ statistics as special cases. Since K dominates K'g, the limits in (4.5.3) exist if and

only if (see [3] for details)

0= N’l;{n_x’. Varg{ Dy (X) - Dy X))

ij=1

= Jim_ Varo{ T [0;(N) - ¢; M)IX (fi)X(‘j)} (4.5.4)

= Z{N lim i i [0;; (N) = ¢;; MOy (V) = 0 (MK N(1i 1)K N 2 )}’

== iJ=l k=1
and
0= i by (X) - D, (X
N’,}lm_'-EO{ N( ) M( )}

- (4.5.5)
= im {3 [0;V) — 0;;(M)OIK NG5 ¢

—poe

{.j=1
Recall that the space H (Ky) ® H (Ky) is equivalent to the RKHS H (K§), where the
reproducing kemel K3: 12 x I = R is given by
K& ((,0); (02,79) 8 KNG t0KN(T, T, ;) e 12

If we define ®yXK g € H(K3) by
DyKFCHE T 6 (N IKE (5 (11.1;)
i.j=1

= T 05 (NIKNCHIKNGRE),
ij=1

then it follows from (4.5.4) that
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. 2 2 _ 3 p2n2 .
Jim 1BwKE - By KR ecn =0
and we can define ®K3 € H(KF) as

i &;; VK NC8)K NOEE)).

DK G (%) 4 Jim Oy KE (%) = z
i,Jj=

lim
N oo

Clearly then, corresponding to any statistic ®(X) of the form (4.5.2), there exists a sym-
metric filter ® € F (K 1%). The term symmetric refers to the fact that ® = {&>N JN=1> where,
for each finite filter ®y, the matrix (¢;;(NV)) is symmetric. Conversely, given an arbitrary
symmetric filter ® € F(K§), there exists a corresponding statistic ®(X) of the form (4.5.2)
only if (4.5.5) is satisfied. This need not always be the case, but for the remainder of this
section, we will ignore any possible convergence problems and simply assume that (4.5.5) is
satisfied for any filter under consideration. In any case, for the performance criterion con-
sidered here (or, for that matter, most other common criteria), the satisfaction of (4.5.5) is

unrelated to the performance characteristics of the filter.

Quadratic detectors for deciding Problem (4.5.1) are often compared using the deflection
ratio, which is one member of the class of so-called generalized signal-to-noise ratios (see
[17] for a discussion of this class of performance measures). The deflection ratio for Problem
(4.5.1) corresponding to a test statistic ®(X) of the form (4.5.2) with associated symmetric

filter ® € IF(KJ) is given by

.
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[E2(@00) - Egtocxn |
Varg(D(X)}

- 2
[1}13. p ¢i,'(N)Ks(thi)]

ij=1

D(®; (KsK3) &

2[lim > 3 ¢i,'¢uKN(‘k"i)KN(tl"j)]
== i j=l k=1

0.4 <DK2\ 2

L S N/ (k%)

2 ®KF, K )m )

We extend the definition of D to include arbitrary filters in the obvious way; that is, for any

® e F(K3), we define

2
g’fs’ ‘”Kﬁ)-(x.%)]
2 2\ )
20K, DK Nja ki)

/

(4.5.6)

D(®; (KsK3)) 4

Comparing with (4.4.2), we see that the deflection ratio takes the form of a signal-to-noise
ratio, where we regard /2 as the index set, K: /2 — R as the signal, and K3: /2 x I? » R
as the covariance function.

It follows immediately from (4.5.6) and the Schwarz inequality that a filter

®° e F(K#) satisfies

D@ ; KgK3) = P 5,” (@; (Ks.K§)) (4.5.7)

if and only if ®° K3 = cKg for some ¢ # 0, and the maximum possible deflection ratio for

Problem (4.5.1) is given by

D@"; (KsK{)) = VillKsllE ki)




102

Since Kg e H(KN) @ H(Ky) = H(KE), a filter ®° e F(K3) satisfying (4.5.7) can always
be found. Further, if we let ®T represent the "transpose” of a filter ® € IF (K3), defined in
the obvious way, then ®T € FF(K#), and ®K# = cKg if and only if ®T K3 = cKs. Hence, 2
filker @ e F(K3) satisfies (4.5.7) only if ®*+ (®")T does, and it follows that a symmetric
filter satisfying (4.5.7) always exists.

Now suppose that the pair (Ks,Ky) is known only to belong to some set and let U
represent the associated set of “"signal-covariance” pairs (s,K), s € H(K), corresponding to
the possible values of (KgK 1% ). The set X (U) is then the set of covariance functions
K:1?xI? - R corresponding to the possible values of K. To decide the stochastic signal
detection problem in the presence of these uncertainties, one might wish to use a quadratic

detector incorporating a symmetric filter @ € F (K (U )) that satisfies

. }{n)t; o D(Dy; (s.K)) = o ‘gagw» (;,;?)2 v D (d; (s X)). (4.5.8)

We refer to an arbitrary filter @y € F (K (U)) satisfying (4.5.8) as a robust filter for the
game (F (K (U)),U.,D). If ¥y is also symmetric, we refer to it as a robust symmetric filter.

As usual, to find a robust filter we search for a saddle point
(Pg; LKD) € F(K(U)) x U satisfying

D (®; (s,K) $ D(®g; (sL,KD) SD(@pis X)), Y De FIKW®)), K)e U.
(4.5.9)

It follows immediately (as in Lemma 4.4.3) that (®y; (s ,Kp)) is a saddle point for

(F(KU)),U,D) only if OgK| =csy, ¢ =0, and

D*(sp.K) SD* (s K), YsK)e U,
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where

* A . =1 2
D (s,!«’)_‘»E rs(‘}?(u»D@’ (s .K)) = Ylis i x)- (4.5.10)

Further, it is easy to see that, for any ® € F (K (U)),
D (®; (s K) SD((®+ D7); (s X)), ¥(sK)e U,

which implies that (®g; (s, Kp) is a saddle point for (F(K(U)),U,D) only if
(Dg + PD); (s.K) is also a saddle point. Hence, robust filters corresponding to saddle

points for (F (K (U)),U ,D ) can always be taken to be symmetric.

Now suppose that the noise covariance Ky is assumed to be known but that Kg is

known only to belong to a convex set S < H(K3). The set

U A {(s,x,%): se s}

is then an admissible uncertainty class defined on the index set /2. Hence, the problem of
finding robust filters for (F (K ﬁ ), D) is identical in form to that of finding robust matched
filters when the noise covariance is known and the deterministic signal belongs to some con-
vex set. It follows by an argument analogous to that given in Corollary 4.3.8 that a robust
symmetric filter for (fF (K 3),0 D) exists and can be chosen to satisfy ®gK§ = s, where s|_

is the unique element of S (the closure of S in H (K z% )) with minimum norm.

If Ky is not assumed to be known, the situation is somewhat more complicated. In this
case, the set ¥ will not generally be convex, and we cannot apply the results of previous sec-
tions. However, if we let U’ & co(T) (the convex hull of U), then it is easy to see that &’

is an admissible uncertainty class on the index set /2. The problem of finding robust filters
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for the game (F (K (U "),U’D) thus takes the form of the robust matched filtering problem
discussed in Section 4.4, and we can apply previous results to the search for saddle points.

Since U’ = co(U ), we again have, for all ® € F (K (U")),
D(®; (s.K)) S D((® + DT ); (s .K)), ¥ (s.K)e U’

and it follows that robust filters corresponding to saddle points for (F (K (U ")),U’,D) can be

taken to be symmetric.
It is true, of course, that a saddle point for (F (K (U ")),U D) need not be a saddle point
for the original problem (F (K (U )),U,D). However, if (®g; (s ,K)) is a saddle point for

(F (K (U "),U’,D), then it follows from (4.5.9) and (4.5.10) that
0 < Yiis ik, = D (Dr; (SLKD) S D (@g; (5.K)), Y (s.K)e U.

Hence, the performance of the filter ®g (as measured by the deflection ratio) is bounded
below by Ylis il ) for all (s,K) e U. In this respect, Gy remains robust for the smaller
problem (F (K (U)),U D) although it is possible that there are yet other filters whose worst-

case performance over U strictly exceeds that of ®p.

To illustrate the robust quadratic detection problem, we consider the following simple
example in which the covariance function of the stochastic signal is assumed to be known.

For the sake of convenience, we consider a set I’ that is larger than co(U).

Example 4.5.1: Let [ = Z, the set of integers and let Q = [-%,x]. Suppose that the

zero-mean, Gaussian signal has known covariance function K g satisfying

T [Ksf)? < oo

i,j:—-
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Note that this implies that the signal is a nonstationary process. Let ¢ be the (necessarily
symmetric) two-dimensional Fourier transform of the covariance function Kyg; that is,

6 € L¥Q? and
Ksm.n) = —[[e!™ ™ o(@M)d ad), ¥ (m.n) e Z2.
Suppose that the noise process is a zero-mean stationary Gaussian process with covari-
ance function Ky having power spectral density v that is known only to satisfy
= [v@da =p, @5.11)
2n g =
and
vi@) SV Sv,(w),  YoeQ, 4.5.12)
where v; and v, are known functions satisfying
0< inf v;(w) < W) < oo,
2, @ < g @
and
-Ljv,(m)dm <p< —Ljv (0)d .
2n 4 2n g ¢
Corresponding to any power spectral density v satisfying (4.5.11) and (4.5.12), we have

K3 (mn0); (mn) = Kn(mym)K(nny) = :11;2- &ein’("'""")eiu"""’)v(go)v(l)du)dk,

and it follows that the set ¥ is given by
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uA {(s,x): s = Kg and K((myn); (moyny) = ';l—z [ e mrmde Mamdy @pvn)d wah,
2 2

where v; (@) € V(®) € v, (0) and L [v(wde = p}
2n g

For this problem then, it is convenient to take the set ¥’ D co(l) to be

U’ {(s K): s = Kg and K ((mn0); (mang) = — [ [ ™ MA=mdn o h)d wd
4x? ot

where v, @V, () S @A) € v, (@)v, ) and — [ [n(@A)do = pz}
4n° Q0

and we seek a robust symmetric filter @y for the game (F (K (U ")),U’.D).

Note that every K € K(U") takes the form of a covariance function for a two-

dimensional stationary random field with power spectral density n satisfying

vi(@V;A) < n@A) S v, (@v, Q) Y (@A) € Q2 (4.5.13)
and
1
—_— A ad ) = p?.
poo [In(wr)d p (4.5.18)

Further, for every K € K (U") with power spectral density 7, the RKHS H (K) consists of

functions of the form (see [48], §8)

f(mn)= ﬁ;&e‘me"‘"ﬁ(m,xm(mmdmx, ¥ (n.n)e Z% (45.15)
where
Wl & [[IF @M P@Nd el < (4.5.16)
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Also note that each K € K (U’) dominates X (U"). In particular, if K 0o € KU, then

for any other K € K (U "), we have

sugl v, (w) 2

e

k< inf v;(w) Ko
wel

It follows from Corollary 4.4.5 that (®g; (s,K) is a saddle point for (F (K(U").W’.D) if
and only if (siKy) is least favorable for (F (K(U"),U'.D) and ®grK = cs for some
¢ #0. Clearly, in this case we will have 5| = Ks. Hence, if we can find Ky € K(U") satis-
fying

D’ (sLK) = %llKsllE k) < %K sl k) =D (LK), VK e K(U),
4.5.17)

then the filter @y satisfying @K = K5 will be a robust filter for (F (K (U ),U’,D).

To find K satisfying (4.5.17), we note that, for any K € K(U") with power spectral

density 1,

Ks(ma) =z [[erome™ LD nwidadt,  Ymm) e 22

Since ( u)lfQ n(w,A) > 0, it follows from (4.5.15) and (4.5.16) that Kg € H (K) and
(D. €

1 ¢ lo@A)1?
Ko = 5 [ mm—dadr. @5.18)

Hence, finding K| € K(U") satisfying (4.5.17) is equivalent to finding the function Mg
minimizing (4.5.18) subject to the constraints (4.5.13) and (4.5.14). This problem has been

solved in [24], where it is shown that 7;_satisfies
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(@A) = max {vi(@)v;(}), min {c lo(@\)], v, (@v,(V)}}, ¥ () € Q7
if ¢ > 0 can be found such that

pechl| — [ [nu@M)dadA = p2

Assuming that such a ¢ exists, we define the filter @y as the infinite dimensional matrix

with entries ¢}, given by

¢,§,.é—ln2-” efme W%dmﬂ ¥ (m,n) e Z%
m »

Since inf _Tp(@A) >0, — e LQ2), and Dy is well-defined. Further, since < is sym-
(@M)eq? n L

metric, so is ®g. Finally, forall (m,n) e Z 2, we have

DpK (m,n) = Z oK ((m,n); (1.4))

N
iam i o(w,\)
41:2” - Mn( 2y nu@bdodd
= Kg(m ,n).

It follows that ®y is a robust symmetric filter for the game (F (K (U ")), U’.D).

4.6. Conclusion
In this chapter, we have investigated the application of reproducing kernel Hilbert space

theory to the problems of robust signal detection and estimation. In particular, we have

characterized minimax robust solutions for the general L2-estimation problem in the presence

5Note that such a ¢ always exists for the case in which o(@A) > 0 for all (w1) € Q2
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of uncertainty regarding the second-order structure of the problem. Also, we have discussed

conditions under which robust solutions to this problem are guaranteed to exist.

These results for the L2-estimation problem are remarkably similar to results given by
Poor in [53] relating to robust matched filtering. In order to more clearly reveal the similari-
ties between the two problems, we have reformulated the robust matched filtering problem in
an RKHS context. Within this context, we have seen that most of our results pertaining to
robust L2 estimation are also valid for the robust matched filtering problem. Many of these

results can be seen to be extensions of those given in [53].

Finally, we have considered the problem of robust quadratic detection of Gaussian sig-

nals in the presence of Gaussian noise where the deflection ratio is used as a performance cri-

~ terion. We have shown that this problem can also be formulated in an RKHS context. Using

this formulation, we have shown that the robust quadratic detection problem is essentially
analogous to the robust matched filtering problem. It should be mentioned that the defiection
ratio may not be the best measure of performance for the robust quadratic detection problem.
While it is well known that the deflection ratio possesses certain desirable properties in
small-signal situations (see, for example, (73]), a better measure of performance in the general
case may be the so-called modified deflection ratio. A discussion of this performance measure
in relation to the deflection ratio and other generalized signal-to-noise ratios is given in appen-
dix D. The robust quadratic detection problem incorporating the modified deflection ratio as a

performance criterion can also be formulated and analyzed in an RKHS context.

The approach presented in this chapter, in addition to providing a unified view of the
problems discussed above, provides a formulation that is useful for investigating robustness

properties in other problems to which RKHS theory applies. For example, in a recent paper

‘“
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[51], Picinbono and Duvaut discuss the design of optimal linear-quadratic detection and esti-
mation strategies in non-Gaussian situations. It appears that this problem can be reformulated
in RKHS terms for the purpose of designing robust linear-quadratic detectors. The structure
and analysis of the problem would undoubtedly be very similar to that presented in Section

4.5.

Also, many different approaches to signal reconstruction and spectrum estimation are
particular examples of a more general RKHS formulation (see, for example, [12] and [79]).
When formulated in this general setting, these problems are seen to be analogous to the gen-
eral L2-estimation problem. This being the case, it would seem natural to apply the minimax
techniques discussed in this chapter to the problem of signal reconstruction in the presence of
noisy observations. The design of robust signal reconstruction and spectrum estimation pro-

cedures in this context is an interesting topic for further investigation.
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CHAPTER §

CONCLUSION

In this thesis, we have considered several different statistical signal processing problems,
and we have applied reproducing kernel Hilbert space theory to the study of each. The thesis
is not intended to be a study of the applications of RKHS theory; our primary goal has been
to investigate the signal processing problems presented herein. Nevertheless, the work clearly

demonstrates that RKHS techniques can be very useful and have a broad range of application.

The thesis is divided into two principal parts. In the first part (Chapter 3), we considered
the problem of signal detection in fractional Gaussian noise. We were able to answer several
interesting questions related to this problem; for example, we gave conditions that are neces-
sary and sufficient for the problem to be nonsingular; we developed whitening filters, and we
characterized the optimal detector in terms of the likelihood ratio. We have left unanswered,
however, many equally interesting questions. For instance, we have not considered the prob-
lem of sequence detection in FGN, nor have we considered what mechanisms might be
expected to give rise to additive FGN on communication channels. In short, there is much
interesting research yet to be done with respect to this problem and with respect to other

aspects of statistical signal processing in the presence of strongly dependent noise.

In second part of the thesis (Chapter 4), we studied some problems in robust detection
and estimation. Applying RKHS techniques, we characterized minimax robust solutions for
L? estimation, matched filtering, and quadratic detection in the presence of uncertainty regard-
ing the relevant statistics. We also gave some results regarding the existence of solutions to

these problems. The RKHS approach provided a general and unified framework in which to
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analyze these problems, and we believe that it can also be profitably applied to other prob-

lems, such as robust signal reconstruction.
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APPENDIX A

SOME LEMMAS REFERENCED IN CHAPTER 3

In this appendix, we state and prove several technical lemmas that were referenced in
Chapter 3. Throughout the appendix, y will be the measure defined by (3.2.11), and Ay will
be the subset of functions in L2(R) defined by (3.2.12).

Lemma A.L: If f € LY (R) A LYR), then f € Ay.

Proof: Let f € L'(IR) N L%R). We must show that f € Lz(u). To this end, recall

that, since f € LI(IR) n L%(R), it follows that f € L2(R), and, for all © € R,

1f (@)t = | [e i f (t)dr

—r

< [If@)ae
8K <o,

Hence,

oo 1 o0
Lor7 2) ) 12 .L ; 2 1 1-2H 1oz 2
2nilf(o))l lol-Hdp < juf(m)l lol-Hdp + ) J1f %

K?

-5-] |m|1-2"dm+—j If (@)1 2dw

Therefore, f € L) and f Ay. 8
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Lemma A.2: Let f,g € LI(IR) N L%R). Then

’21,'{.[ fw) §(-0) 101" Hdo =V HRH-1) [ [£()g(s) 11— 12 2dsdr, (A

—O——en

where Vy; is defined by (3.2.3).

Proof: Suppose first that f and g have compact support. Then it follows straightfor-

wardly from Young’s inequality (see, [15], page 232) that

JIrenge)ie—s12-2dsdr < o,

DR

Hence,

oo N
1 2 N 1~28 . 1 2 A ‘1-2H
an (o) & (—w) o @= lim [fw) g -w) lo dw

o o N
. /11 i
=k —_— i0(t=s) | oy | 1-2H
Jim [[fr®ee) o [e o dw |dsdr

- os N
, —— |1 -
= lim [ [f(@)g() ;t-gcos(mlt-sl)wl M d o \dsdt

os o Nit=sl

. — 2|1 -
=13’_'5. _uf(t)g(s) bp—s 12H-2 | g cos(AH d\ |dsdr,

T
Now,
1 X
lim — [cos(WAH# dd = Vy H 2H -1),
* X =doe uo

and there exists a constant K > Q such that, for all x > 0,
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X
jcos(k)kl"z" dAr | <K.
0

Therefore, by the dominated convergence theorem,

oo oo Nit-si

: _— 211 -
Nh_xe.iif(:)g(s)n-slw 2 y g cos(MA2 g\ |dsdt

= VyHQH-1) [ [£ ) g(s) Ve=s 1 2dsdr,

-l

and (A.1) follows for f and g with compact support. To prove (A.l1) for general

f& € L"\®) N LAR), let (fy )= and {gy )¥=1 be defined by
In@ 2 £ @)y nile)s teR,
and
en () & g () Ly vyl teR.

Clearly, fy = f and gy — ¢ in L'(R) and L*(R), and it fcllows from the proof of Lemma
3.2.1 that fy—f and gv—$¢ in L2(n). Since fy and gy have compact support for all N, we
get

?l-j (~0) g (~0) lol"Hdo = Jim ij(—m)gN(—m) lol - dw

= lim VyH 2H-1) [ [fn@)gnts)y te=s 1% 2dsar

NN
= lim Vy H (2H -1) [ [ g(s) 10=s 1% ~2asar
~“N-N

=VyHQH-1) [ [f)g(s) l1—=s 1 2dsdr. m

e e ]
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' " iox _ "
Lemma A.3: Let § 4 {5—‘.—0)—1-; t € R). Then S spans L3().

Proof: Clearly, S & (I{g,y; ¢ € R) spans L¥(R), and, since

ei®

=i —), v R)
o [041(—) we

it follows from the Fourier-Plancherel theorem that § spans LZ(R). Hence,

[0 4

ioe_ isgn(a)H -A)=
(B, () A £ — Lol 2

;¢ € R) spans L) and it is sufficient to show that

any g, can be approximated in L?(n) by a finite linear combination of functions in $. Now,
it is swraightforward to show that §, € L%(R) with inverse Fourier transform
g € L'WR) n L¥R) given by

1

g (= Totits [1(0’,)(1)(|:+r|"*-” = 15y 1 g e+t A ] te R

Since g, € L'(R) NL%*R), it is clear that there exists a sequence of functions
n

{0n(0) & Y a;1 (g, (~1)) s, converging to g, in L'(R) and L%(R). Tt follows from the proof
|

of Lemma 3.2.1 that ¢, — §, in L2(u), and, since

. n ei(l)l.'_l
0, (0) = Y a,— , Yowe R,
part im

the result follows. W
Lemma A.4: Let [0,T] be a compact interval and, for r € [0,T], let f, be given by

t
fiw) 8 Iigu)u?H foH =%z ) Hgr, u € [0,T].

1
T(H-12)

Then the set of functions {f,; t € [0,T)} spans L%[0,T)).
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Proof: It suffices to show that the only function in L2([0,T]) orthogonal to
{f;; t € [0,T]} is the zero function. To this end, let g € L%[0,T)) and suppose that, for all

t € [0T}],

T
0= [fi(u)g(u)du
0

4

t
_ 1 Yol e \HN e
o 7rmrat gu ;[1:” (v-u)!~"dt | gu)du

t

T
_.._l__ -4 _ % Y%H o~
T(H-%2) {'H g“ wf P H g (u)duldt.

Differentiating with respect to ¢, we see that, for almost all r € [0,T],

t
ol Hosr  H-% WeH oray
= I'(H-%)t (J;(t u) y g (u)du.

Hence, for all ¢ € [0,T],

£
1 f(s—u)”"”u""’” g(u)du|ds

0= j(t S) F(_PT-_'/;-)' |

F(’/z H)

t t
= 1 Ya-H o\ (o ¥
= Tommra T 1 8@ (fe-s)t s -u)fds fdu

H o (u)du.

]
o\—.. -~

Differentiating again with respect to t, we see that, for almost all t € [0,T],

0=:%H g(r).
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Hence, g =0 almost everywhere in [0,T], and it follows that {f,;r € [0,T]) spans

L¥[0,T). =

.
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APPENDIX B

PROOF OF THEOREM 4.3.5

In this appendix, we prove Theorem 4.3.5. Throughout the appendix, / will represent an
arbitrary index set, U an admissible uncertainty class defined on 7, K (/) the class of covari-
ance functions contained in U, and FF (K (7)) the class of filters defined on K (/). In order

to prove Theorem 4.3.5, we will need the following technical lemmas.

Lemma B.1: For any covariance function K defined on / and any C >0,
H((CK)=H (), and
X (cr) = % ¥k
Further, if Ky and K; are two covariance functions on /, and K, « CK, then
H(K,) ¢ H(K,), and

Ir ||'21(x°) sCIf “%(xl)’ ¥f e HK,y.

Proof: See [1], §1.7 and §1.13. =
Lemma B.2: If K, and K, are covariance functions on / and K, « CK,, then
h e F(K,) implies he F(K,).

Proof: Let h = {hy}5.;, where hy, hy, - - - are finite filters. Then, since CK 4K is

nonnegative definite on / and h € F (K ),
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0< lim ihyK) - hyK g,
= hm Wy —hy)K 1, (yg=hy))
S Jm _C \(ha~hy)K o, (y—hy))
= M_lzlvnj»- Clihyg Ko - by K ol )
=0,

It follows that h e F(K,). ®

Lemma B.3: Suppose K| « CK and let K, = (1-0)K o+ 0K for 0 <t < 1. Then

H (K o) = H(K), and, for all a sufficiently small,

(1-0)K y « K, « (1-a+Vo)K g (B.1)
Hence, by Lemma B.1,
-___1 412 < i 2 < 1 M2
i Ml o) < Mk To Il x> (B.2)

and Mgy = Mk x, as ¢ = 0.
o o)

Proof: Clearly, (1-0)K ¢ « K, « (C+1)K,. This establishes the left-hand side of (B.1)

and implies (by Lemma B.1) that H (K o) = H Ky forall 0<a< 1. Also,

(1-o+Va)K oy - Ky = (1~oa+Vo)K o ~ (1~0)K o - 0K,
= VoK - oK

1
=0 |—Kqs-K,|.
Hence, forall0 < a < C™2, K a € (l—a+‘/E)K o» Which establishes the right-hand side of (B.1)

and proves the lemma. B
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Lemma B.4: Let Ky, and K; be covariance functions such that K; « CK, Let
so€ H(Kg) and Ky = (1~a)Kg+aK; for O0<a <1l Choose hye F(Kg) such that

hoKo = 5o and h, € FF(K,) such that hoK , = 5o (recall H (Kq) = H (K ), by Lemma B.3).

Then

éi.glo (hg=ho)K g, (hy=hg)) = ilglo lIhgK g = MoK olly ko) = Os (B.3)
and

lim (hg—ho)K . (he=hg)) = lim JIhoK'y = hoK &,y =0 (B.4)

Proof: Notice first that (by Lemmas B.1 and B.3) H(K,) c H(Ky) = H(K,). Let
hy = (h9}7.;. Then
0< i - hK gli

Aim_ {lso - hy K ollir )
. 1 S0 12

< lim ——|lsg - hyK by (B.2
Am liso ~ hyKolliz ko) (by (B.2))

=Ly - 2

= Tg 5o — hoKollarxa

=0.

So h¢K, converges to s in H(K,) as well as in H(Ky). Further, by Lemma B.2,
F(KK,) =F Ky < F(K,), and it follows from an argument similar to the above that hyX,

and hoK | both converge in H (Ky) and H (Ky) as well as in H (K;). Hence,
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1
!(hg—hg)K g, (he—hp)) S e !(hg=hg)K o, (hg—ho))

1
= 1—_&""0‘1( a — hoKolld k)
1
= I;“haxa - (1-o)hoK o = athoK 1llF k)
1 2
= ——lsp - - oh
o llso = (1-0)sp oK 1l

o2
= 'i—_allso = hoK i k-
(B.3) follows by letting & — 0 and noting that |Isq ~ hoK ,lIZ (ko remains bounded (by lemma
B.3). Finally, since K, « CK,
0 S {(hg-ho)X 1, (hg—ho)) S C {(ha—hg)K o, (ha—ho)),
so (B.4) follows from (B.3). =

Proof of Theorem 4.3.5: It follows immediately from lemma B.2 that hg € F (K(U)).
By Lemma 4.32, M" (s X) =02 - s, s)ax, for (s.K) € U, and by Lemma 4.3.3, M" is

concave on U/. Therefore,
lsr, s <ls, s\ YsK)e U
SLSuma@Ey) S\ S, Ky ’

if and only if, forall s K) e U,

.1 \ .
olzu-»% 3 [<S°" Soll (Ko ~ SuL SL/n(KL)] 20,
where s, = (1-a)s + as and K, = (1-)K| + oK. Separating terms and applying Lemma

B.3, we get
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o1 \ \ \
lim — [(Sw S KD = L sﬁnum] =23, Sumy =~ 2 $L SLm K,
o 1 \ / \ ]
+ lim — sy, 5 - §
lim — [\L LI Ko = SL» S Ll k)
= \ \
=2 (S, hR/ -2 (SL, hR/ﬂ(K.)

. 1[/ \ / \ ]
+ lim — |51, S - S, S .
a a O LSk ~ L SLHE (K

Now, as in the proof of Lemma B.4, we find hy € F (K (U)) such that h K, = s with con-

vergence in both H (K ) and H (Ky). Then

SLsumxy = NaK o NaKolm iy
= (1-002 IhoK 1, hg) + 20(1-0) (hoK, he + a2linGK I )

and
SL SLBKY = MK o o)
= (1-0) (heK L, hg) + & (1K, he).
Hence,

.1 .
lim TI- [(S[_, sL)ﬂ(K,) - (SL’ SL)"(KQ] = élg(l) [(1-0.) (haKL’ ha> + (2o—-1) (haK, ha>

- & [IhK Ihzr(x._)]
=hgK |, hg) ~ (K, hg (by Lemma B.4).
= sy, hy, — (hpK, hg).
Therefore,
1
lim — [(Sw Salt Ky = L Sl)n(m] =2, hg) = 1, by — ek, by,

It follows that (4.3.9) holds if and only if (4.3.6) holds. This proves the theorem. W
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APPENDIX C

RKHS APPROXIMATION LEMMA AND PROOF OF LEMMA 4.4.8

RKHS Approximation Lemma: Let / be a separable metric space and let {/y }y-; be a
sequence of subsets of / that is monotone increasing (/; </, < - - -) and such that NuxlN is

dense in /. Let K be a continuous covariance function on /, and let Ky, be the restriction of
K to Iy. Let s be a continuous function on I and let sy be its restriction to [y. If

s € H(K), then sy € H(Ky) for all N and

= lim .
llslar ey = Hm s llar vy

Conversely, if sy € H (Ky) for all N, then

1~}i—r£. lsn lar ) < >

only if s € H(K).
Proof: See (47], pp. 316-319. &

Proof of Lemma 4.4.8: Suppose that (hg; (s, Kp) is not a saddle point for

(FF (U),0 ,A). Then there exists (s ,K) € U such that

2
/ \
[\hR' s/”o]

Alhg; (5,K)) = 7———
R Brs Khpg,

2
) \
[\h R S L/llo]

< Thg Kihgs
\R’ LR/.Q

= Alhg; (5L.KD).

Choose 0 < a < 1 and let 54 = (1-a)s + o and K, = (1-)K + aK. It follows (see the

proof of Lemma 4.4.1 or [53], Property 2) that
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Alhg; (s Kp) S (1-0)A(Bg; (5,K)) + 0A(hg; (s, KD)
< A(hR; (S L’KL))'

Now, since S < H is convex with a nonempty interior, it is easily established that the inte-

‘rior points of S are dense in S. Further, since K, is strictly positive, the range of K, is

dense in H,. These facts imply that there exists a sequence (s, },=; € S N H (K,) such that

s, = sallF, = 0. It follows that (g, S, @, = Ut Sym, 2nd, since (hg, Kohgym, > 0.

A(hg; (5,.Kp) = Alhg; (54,Ky)). Hence, there exists an sy such that (sy,Ky) € U’ and
Ahg; (5n.Kq)) < Ahg; (sL.KL).

This contradicts the hypothesis that (hg; (s, Kp)) is a saddle point for (F (K(U"),U/",4). &
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APPENDIX D

GENERALIZED SIGNAL-TO-NOISE RATIOS IN QUADRATIC DETECTION

D.1. Introduction

In this appendix, we discuss some properties of the so-called generalized signal-to-noise
ratios with regard to their use in evaluating the performance of quadratic detectors used to
discriminate between two Gaussian hypotheses. A somewhat more detailed discussion is
given in [6]. Throughout the appendix, X & {X(¢), t € I} will represent an observed process
defined on some index set /, which is assumed to be a separable metric space. We assume
that X is a zero-mean, Gaussian process with one of two continuous covariance functions; the

object being to test the hypotheses:

Hy: X has covariance function K,
Vversus O.1.1)

H;: X has covariance function K},

A special case of considerable practical importance is the signal detection problem, in which
H, corresponds to a Gaussian signal in additive, independent, Gaussian noise, and H,

corresponds to noise only. In keeping with this example, we define
Kg é K 1 - K o

however, one should keep in mind that, in general, K g need not be a covariance function. We

assume also that Problem (D.1.1) is nonsingular.
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It is common practice to decide Problem (D.1.1) by using a quadratic detector; that is, a

detector in which the test statistic ®(X) is a quadratic functional of the observed process.
Indeed, the optimal detectors® generally take this form. Because it is difficult to evaluate the
probabilities of error for such a detector, other measures of performance are often used.
Among these are the generalized signal-to-noise ratios (GSNR;s), which we will represent as
a parametric family (D4, 0 < @ S 1}. Given any quadratic statistic ®(X), D o(®P) is defined
as [17]

[E: (@01 - Egto00) |

A
Da(® S (1-o)Varg (D(X)} + aVar (X)) ’

where the subscripts 0 and 1 indicate expectations taken under H,, and H,, respectively. D is
referred to as the deflection ratio, which we discussed in Section 4.5, and D, as the comple-
mentary deflection ratio. We will show that every performance measure in this class can be
represented as a ratio of inner products in a reproducing kernel Hilbert space. Such a
representation has several advantages. Apant from being mathematically appealing, it leads
straightforwardly to a characterization of the quadratic statistic ®q(X) that maximizes D o(®)
for each a € [0,1]. Also, it clearly reveals one of the weaknesses of the GSNR as a measure
of performance for quadratic detectors and leads naturally to consideration of an alternative

measure, which is superior to the GSNR in some respects.

"Throughout this appendix, the term "optimal detector” refers to a detector in which the test statistic ®(X)
is (with probability one) a monotone function of the likelihood ratio L(X}.
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D.2. GSNR Representation
As in Section 4.5, we define a quadratic test statistic as any random variable ®(X) that

can be written in the form

OX) = lim By(0 4 lim T oy WX (X)), D®.2.1)
—doe —)oo i.j=1

where (f;};2; < is a sequence of observation points (depending on ®(X)), and, for each
positive integer N, the infinite-dimensional, real matrix (¢;;(N)) is symmetric and has only
finitely many nonzero elements. The limit is taken in the mean-square sense; i.e., we assume

that, for n =0 and 1,

Jim B, [@(X) - Dy (X)12 = 0. (D.2.2)

Now, let @ € [0,1] and define K,: I2 x I - R by
K o((21,%1); (29,%9)) 4 (1-0)K ot 1,2 DK (T}, T) + 0K 1 (21,29)K (T(,T,).

Clearly, each K, is symmetric and nonnegative definite on /2 x I2. Hence, for each
a € [0,1], there exists an RKHS H(K,) with reproducing kemel K, If we let
K4 (K o 0 S a <1}, then it follows from (D.2.1) and (D.2.2) that, corresponding to each

quadratic statistic ®(X), there exists a symmetric filter ® € [F (K'), and (see 3] for details)
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[El (D(X)) - Eg[D(X)) ]2
(1-0)Vary(D(X)} + aVar, (O(X))

- 2
[lim Zz ¢ij(N)Ks(fjJi)]

—Joe ".j‘=1

Dy(®) 4

N—see ; izl kl=1

2 [lim i i 05 (N Yop (N (1)K o8 1)K o(21:2;) + 0K 1 (8 1)K 1 (1108)]

o 2
[A}im z ¢ij (N)Ks(tj ,I,-)] (D.2.3)

% .=l

Z[Iim T X 0ij (V)0 VK o (5 4); ('i”j))}

N oo ij=1 k=1

2
KK s PKog (K.)]

T2 ®Ke, PRk,

Note that in order to express D in the final form given in Equation (D.2.3), we have used
the fact that Kg € H (K,), which follows from the nonsingularity conditions for Problem

(D.1.1), as stated in Theorem 2.1.4.

One of the obvious advantages of representing D, in the form given by (D.2.3) is that it
leads immediately to a characterization of the quadratic statistic ®4(X) that maximizes D ,(d)
for any given a. It appears that such a characterization was not previously known [67]. To

characterize <I>;(X), notice that (D.2.3) and the Schwarz inequality together imply that
Do(®@) S %2 Ks, Ksymx

with equality if and only if ®K, = cKg for some ¢ # 0. That is,
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®a(X) = lim dy(X)
N —ee
) - W (D.2.4)
4 lim ¥ ¢V XX @),
N—)ﬁ i.j=1
maximizes D 4(®) if and only if there exists ¢ # 0, such that
cK5(1,5) = K o(1.5)
8 lim dyK4(t.s5)
N 00 D.2.5)

= lim 3 05K () G,
N 0 ij=1

where the limit in (D.2.5) is taken in H (K ,) (which implies pointwise convergence, as well).
Note that, even though we can always find @, 4 (&’,; }N=1 satisfying (D.2.5), the correspond-
ing {®y(X)}7=; may not converge in mean-square, so we cannot guarantee that @ (X) exists.

However, we do have

'Y - \
D, & o D,®) =% Ks Ksmi,

As a concrete example, let us consider the following simple problem.

Example D.2.1: Let I ={1,2,---,N}, and assume that K, and K, are positive
definite N x N matrices. We are looking for a N x N symmetric matrix @, such that the

quadratic form
O3(X) 4 XTdeX
maximizes the GSNR

[Tr &K )2
2[(1-0)(Tr K (@K (@) + a(Tr K ;DK )]

D (@) =

for fixed a € [0,1]). It follows from (D.2.5) that ®; must satisfy
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cKg = (1-0)K (®eK o + 0K @K (D.2.6)
for some ¢ # 0. One solution to (D.2.6), for ¢ = 1, is given by
®; = KK [(1-0)K K [1K g + 0K ]!
e =K1 Ksl oK1'Ko 1 ©27)

= [(1-)K oK Ko + 0K ;17! = KTIK [(1~)K oK T K o + 0K 417

This solution was established by diagonalizing K and K; simultaneously, but it is easy
to verify directly that it satisfies Equation (D.2.6). For o # 0, we use a matrix inversion

lemma ([30], page 19) to write

P A [(1-0)K K 'Ky + 0K ;]!
-1
a

1., 1 -1 -1
= m— — —— 1 K .
KT — —(1-@K 'K oPKoK ]

L ok- - IR KT
Kt 'E(l—a)K11Ko[(1-a)KoK11Ko+°‘K1] 'K oK

Then, for @, defined by Equation (D.2.7), we have

(1-0)K (DK o + 0K (g | = (1~0)K o(P — KK oP)K o + 0K (P - KK 4P )K,
= (1-0)K oPK g ~ (1-0)K oK 'K oPK g + 0K |PK | — 0K (PK |
= (1-)K oPK o ~ (1-0)K oK 'K oPK g + K| — (1-0)K oPK o - K g

+ (1-)K K 1K oPK
=K1 -Kp
= KS’

as claimed. Verification for o = 0 is straightforward.

For this example, it is easy to check that

Dy = D y(®y) = VoTr OgKs.
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The foregoing discussion reveals one of the weaknesses of the GSNR, to wit: under
mild regularity conditions on Problem (D.1.1), there exists an optimal quadratic detector
incorporating a test statistic @, (X), which does not generally maximize D4(®) for any
o € [0,1]. To be more specific, in [23], Kailath and Weinert have shown that if Problem
(D.1.1) is strongly nonsingular7 (as defined in [23]), then there exists an optimal quadratic

detector for (D.1.1), and @, (X) satisfies

gy (X) = lim T 0PNV X (PIX P, D2.8)
= j=l
where
Ks(t.5) = lim T 0PN K ot S (5 9P, D29
==l

However, it follows from (D.2.5) that @, (X) maximizes D 4 if and only if there exists ¢ # 0

such that

cKs(r.s) = lim f_‘, OFNIK o((2,5); (7P 17P)). (D.2.10)
- =l

As a general rule, (D.2.9) and (D.2.10) will not be satisfied simultaneously, and we will be

able to find a nonoptimal quadratic statistic (X) such that
D o(®) > D o).

For example, consider the following simple signal detection problem.

TActually, by changing our definition of quadratic statistic slightly'to avoid convergence problems, we
could drop this restriction. The interested reader is referred to [23) or {57] for details. In any case, this is only
an issue when / is an infinite set since (D.1.1) is always strongly nonsingular (trivially) if / is finite.
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Example D.2.2: Let ] = {1, 2, ,N}, K0=KN, and Kl = KN + Ks, where KN and
Kg are both N x N covariance matrices. Assuming Ky is positive definite, there exists an

optimal quadratic detector with

D, (X) & XT D, (X),
where the matrix @, is given by
D AKGIKKT =Kt - KT

In order for Cbop, (X) to maximize D ,, we must be able to find ¢ # 0 such that

CKS = (l—a)Ko(Doleo + aKl(boptKl
= (1)K oK5! - KKy + oK (K5 - KKy,

which is possible if and only if
aKjKs) + Qo—c)K§Ks)? + (1-c)KR'Ks = 0. (D.2.11)
In particular, if the noise is white, so that K§!Kg = K, then (D.2.11) is satisfied if and only
if all of the nonzero eigenvalues of K g satisfy
aA? + 2a—c)A + (1-¢) = 0.
For this example, we already know that @, defined by Equation (D.2.7) satisfies Equa-

tion (D.2.6) and maximizes D,. Hence, if (D.2.11) is not satisfied, it follows that CD; is

nonoptimal (®g # ¢ ®D,, for any ¢ # 0), and yet D o(®y) > D 4(D,p)-

D.3. Alternative Performance Measure

Since it seems reasonable to want a performance measure for quadratic detectors that is

always maximized by an optimal quadratic detector, one is led to search for alternatives to the

“
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GSNR. In light of Equations (D.2.8) and (D.2.9) vis-a-vis Equations (D.2.3) through (D.2.5)
a natural choice is

. 2
[(‘DK o Ksaky e n(K,)]

/ i , (D.3.1)
2 DKo, PKoym ko) @ HK))

D (®) 4

where K¢;: 12 x I? = R is defined by
Ko1((£1,T1); (£2:%9)) 8 Kot 1,2)K 1(T1,T).

The fact that D (®) is well defined for any quadratic statisic (X) (e,
Kse HKg)=H K )Q@H(K,) and ® € F(Kg)) follows easily from the mean-square

convergence in (D.2.2) and the nonsingularity conditions given in Theorem 2.1.4.

Equation (D.3.1) and the Schwarz inequality together imply that
D, (@) <% Ks Ksmxy o 8K,y
with equality if and only if ®Kg, = cKg for some ¢ #0. It follows that <b;(X) maximizes
D ,(®) if and only if there exists ¢ # 0 such that

cKs(t,5) = DK (1.5)

8 lim  F ¢ (VKo 1)K (s .5)).
N —roe i.j=l

As with <D(;, it may be that no such <D; exists, but we always have

D!l s D (D) =% IKe K '
7 oe Fika) w(®) \* 8 A S5 (Ko) @ H (X))

Now, if Problem (D.1.1) is strongly nonsingular, then we know that there exists an optimal

qQuadratic statistic ®@,,,(X) satisfying Equations (D.2.8) and (D.2.9). Since (D.2.9) clearly

implies that ®,,,Kq = Ks in H(Ky) ® H(K)), it follows that ®,, (X) maximizes D ().
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Conversely, it follows fairly easily from the results in [23] and [57] that, even if (D.1.1) is not
strongly nonsingular, a quadratic statistic ®(X) maximizes D ,(®) only if the corresponding

detector is optimal.

~

For the signal detection problem, it is easy to verify that D, can be rewritten as

[E: (0000 - Egtocxn |
1 Vary(D(X)] + [Varl{Q(X)] - Vars{d)(X)]] '

D ,(®) = D.3.3)

where Varg{®(X)} is the variance of ®(X) when only the signal is present. In this form, it is
clear that D is equivalent to the so-called modified deflection ratio (see [17]). The denomi-
nator in (D.3.3) can be interpreted as the average of the variance of ®(X) in the presence of
noise only and the variance of ®(X) due to noise in the presence of the signal. Viewed in

this fashion, D, becomes somewhat more intuitively appealing.

As a final remark, we note that, while it is not directly related to detector error probabil-
ity in any obvious way, D, may be, in general, a better predictor of detector performance
than the GSNR. In particular, for the case of slow and fast-fading channels considered by
Gardner in [16], D, displays significantly less anomalous behavior than the GSNR when
viewed as an indicator of performance gain with increasing observation time. In general, this

conjecture is based on the fact that Du(d’) is essentially a measure of the distance, in

H (K ® H(K,), between ®K, (suitably normalized) and the nearest constant multiple of

K. To be more precise,
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d¥(®K g, Kg) 4 cigg Il "z;zi" - cK s”2
=1- -IIFZSI?D w(@),
where || - || is the norm in H (K,) @ H (K ). Hence, if ®; and ®, are two quadratic statistics
and
D (@) > D (D),
then

d (DK o1, Kg) < dADK gy, K g).

Since the optimal test statistic is essentially defined in H (K) ® H (K;) and corresponds to
K, the detector incorporating ®; can be regarded as being "closer" to the optimal detector
than the detector incorporating @,. Heuristically then, D, can be regarded as a measure of
the deviation of a quadratic detector from the optimal. On this basis, one might expect D, to
be a fair indicator of detector performance. (See [11] for a discussion of a similar property of

the efficacy of nonlinear detectors for deterministic signals.)
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